| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gzrng.1 |
⊢ 𝑍 = ( ℂfld ↾s ℤ[i] ) |
| 2 |
|
gzsubrg |
⊢ ℤ[i] ∈ ( SubRing ‘ ℂfld ) |
| 3 |
1
|
subrgbas |
⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → ℤ[i] = ( Base ‘ 𝑍 ) ) |
| 4 |
2 3
|
ax-mp |
⊢ ℤ[i] = ( Base ‘ 𝑍 ) |
| 5 |
|
eqid |
⊢ ( Unit ‘ 𝑍 ) = ( Unit ‘ 𝑍 ) |
| 6 |
4 5
|
unitcl |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 𝐴 ∈ ℤ[i] ) |
| 7 |
|
eqid |
⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) |
| 8 |
|
eqid |
⊢ ( invr ‘ 𝑍 ) = ( invr ‘ 𝑍 ) |
| 9 |
1 7 5 8
|
subrginv |
⊢ ( ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) |
| 10 |
2 9
|
mpan |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ) |
| 11 |
|
gzcn |
⊢ ( 𝐴 ∈ ℤ[i] → 𝐴 ∈ ℂ ) |
| 12 |
6 11
|
syl |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 𝐴 ∈ ℂ ) |
| 13 |
|
0red |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 0 ∈ ℝ ) |
| 14 |
|
1re |
⊢ 1 ∈ ℝ |
| 15 |
14
|
a1i |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ∈ ℝ ) |
| 16 |
12
|
abscld |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 17 |
|
0lt1 |
⊢ 0 < 1 |
| 18 |
17
|
a1i |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 0 < 1 ) |
| 19 |
1
|
gzrngunitlem |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( abs ‘ 𝐴 ) ) |
| 20 |
13 15 16 18 19
|
ltletrd |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 0 < ( abs ‘ 𝐴 ) ) |
| 21 |
20
|
gt0ne0d |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 22 |
12
|
abs00ad |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) = 0 ↔ 𝐴 = 0 ) ) |
| 23 |
22
|
necon3bid |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) ≠ 0 ↔ 𝐴 ≠ 0 ) ) |
| 24 |
21 23
|
mpbid |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 𝐴 ≠ 0 ) |
| 25 |
|
cnfldinv |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 26 |
12 24 25
|
syl2anc |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 27 |
10 26
|
eqtr3d |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 28 |
1
|
subrgring |
⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → 𝑍 ∈ Ring ) |
| 29 |
2 28
|
ax-mp |
⊢ 𝑍 ∈ Ring |
| 30 |
5 8
|
unitinvcl |
⊢ ( ( 𝑍 ∈ Ring ∧ 𝐴 ∈ ( Unit ‘ 𝑍 ) ) → ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ∈ ( Unit ‘ 𝑍 ) ) |
| 31 |
29 30
|
mpan |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( invr ‘ 𝑍 ) ‘ 𝐴 ) ∈ ( Unit ‘ 𝑍 ) ) |
| 32 |
27 31
|
eqeltrrd |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 1 / 𝐴 ) ∈ ( Unit ‘ 𝑍 ) ) |
| 33 |
1
|
gzrngunitlem |
⊢ ( ( 1 / 𝐴 ) ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( abs ‘ ( 1 / 𝐴 ) ) ) |
| 34 |
32 33
|
syl |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( abs ‘ ( 1 / 𝐴 ) ) ) |
| 35 |
|
1cnd |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ∈ ℂ ) |
| 36 |
35 12 24
|
absdivd |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ ( 1 / 𝐴 ) ) = ( ( abs ‘ 1 ) / ( abs ‘ 𝐴 ) ) ) |
| 37 |
34 36
|
breqtrd |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → 1 ≤ ( ( abs ‘ 1 ) / ( abs ‘ 𝐴 ) ) ) |
| 38 |
|
1div1e1 |
⊢ ( 1 / 1 ) = 1 |
| 39 |
|
abs1 |
⊢ ( abs ‘ 1 ) = 1 |
| 40 |
39
|
eqcomi |
⊢ 1 = ( abs ‘ 1 ) |
| 41 |
40
|
oveq1i |
⊢ ( 1 / ( abs ‘ 𝐴 ) ) = ( ( abs ‘ 1 ) / ( abs ‘ 𝐴 ) ) |
| 42 |
37 38 41
|
3brtr4g |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 1 / 1 ) ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) |
| 43 |
|
lerec |
⊢ ( ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ∧ ( 1 ∈ ℝ ∧ 0 < 1 ) ) → ( ( abs ‘ 𝐴 ) ≤ 1 ↔ ( 1 / 1 ) ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) ) |
| 44 |
16 20 15 18 43
|
syl22anc |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) ≤ 1 ↔ ( 1 / 1 ) ≤ ( 1 / ( abs ‘ 𝐴 ) ) ) ) |
| 45 |
42 44
|
mpbird |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) ≤ 1 ) |
| 46 |
|
letri3 |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( abs ‘ 𝐴 ) = 1 ↔ ( ( abs ‘ 𝐴 ) ≤ 1 ∧ 1 ≤ ( abs ‘ 𝐴 ) ) ) ) |
| 47 |
16 14 46
|
sylancl |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( ( abs ‘ 𝐴 ) = 1 ↔ ( ( abs ‘ 𝐴 ) ≤ 1 ∧ 1 ≤ ( abs ‘ 𝐴 ) ) ) ) |
| 48 |
45 19 47
|
mpbir2and |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( abs ‘ 𝐴 ) = 1 ) |
| 49 |
6 48
|
jca |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) → ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) ) |
| 50 |
11
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℂ ) |
| 51 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( abs ‘ 𝐴 ) = 1 ) |
| 52 |
|
ax-1ne0 |
⊢ 1 ≠ 0 |
| 53 |
52
|
a1i |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 1 ≠ 0 ) |
| 54 |
51 53
|
eqnetrd |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
| 55 |
|
fveq2 |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = ( abs ‘ 0 ) ) |
| 56 |
|
abs0 |
⊢ ( abs ‘ 0 ) = 0 |
| 57 |
55 56
|
eqtrdi |
⊢ ( 𝐴 = 0 → ( abs ‘ 𝐴 ) = 0 ) |
| 58 |
57
|
necon3i |
⊢ ( ( abs ‘ 𝐴 ) ≠ 0 → 𝐴 ≠ 0 ) |
| 59 |
54 58
|
syl |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ≠ 0 ) |
| 60 |
|
eldifsn |
⊢ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 61 |
50 59 60
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ( ℂ ∖ { 0 } ) ) |
| 62 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ℤ[i] ) |
| 63 |
50 59 25
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( 1 / 𝐴 ) ) |
| 64 |
50
|
absvalsqd |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 · ( ∗ ‘ 𝐴 ) ) ) |
| 65 |
51
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
| 66 |
|
sq1 |
⊢ ( 1 ↑ 2 ) = 1 |
| 67 |
65 66
|
eqtrdi |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( abs ‘ 𝐴 ) ↑ 2 ) = 1 ) |
| 68 |
64 67
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( 𝐴 · ( ∗ ‘ 𝐴 ) ) = 1 ) |
| 69 |
68
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / 𝐴 ) = ( 1 / 𝐴 ) ) |
| 70 |
50
|
cjcld |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ∗ ‘ 𝐴 ) ∈ ℂ ) |
| 71 |
70 50 59
|
divcan3d |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( 𝐴 · ( ∗ ‘ 𝐴 ) ) / 𝐴 ) = ( ∗ ‘ 𝐴 ) ) |
| 72 |
63 69 71
|
3eqtr2d |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) = ( ∗ ‘ 𝐴 ) ) |
| 73 |
|
gzcjcl |
⊢ ( 𝐴 ∈ ℤ[i] → ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ) |
| 74 |
73
|
adantr |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ∗ ‘ 𝐴 ) ∈ ℤ[i] ) |
| 75 |
72 74
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ[i] ) |
| 76 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 77 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 78 |
|
cndrng |
⊢ ℂfld ∈ DivRing |
| 79 |
76 77 78
|
drngui |
⊢ ( ℂ ∖ { 0 } ) = ( Unit ‘ ℂfld ) |
| 80 |
1 79 5 7
|
subrgunit |
⊢ ( ℤ[i] ∈ ( SubRing ‘ ℂfld ) → ( 𝐴 ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐴 ∈ ℤ[i] ∧ ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ[i] ) ) ) |
| 81 |
2 80
|
ax-mp |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝐴 ∈ ( ℂ ∖ { 0 } ) ∧ 𝐴 ∈ ℤ[i] ∧ ( ( invr ‘ ℂfld ) ‘ 𝐴 ) ∈ ℤ[i] ) ) |
| 82 |
61 62 75 81
|
syl3anbrc |
⊢ ( ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) → 𝐴 ∈ ( Unit ‘ 𝑍 ) ) |
| 83 |
49 82
|
impbii |
⊢ ( 𝐴 ∈ ( Unit ‘ 𝑍 ) ↔ ( 𝐴 ∈ ℤ[i] ∧ ( abs ‘ 𝐴 ) = 1 ) ) |