| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gzrng.1 |  | 
						
							| 2 |  | gzsubrg |  | 
						
							| 3 | 1 | subrgbas |  | 
						
							| 4 | 2 3 | ax-mp |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 | 4 5 | unitcl |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 | 1 7 5 8 | subrginv |  | 
						
							| 10 | 2 9 | mpan |  | 
						
							| 11 |  | gzcn |  | 
						
							| 12 | 6 11 | syl |  | 
						
							| 13 |  | 0red |  | 
						
							| 14 |  | 1re |  | 
						
							| 15 | 14 | a1i |  | 
						
							| 16 | 12 | abscld |  | 
						
							| 17 |  | 0lt1 |  | 
						
							| 18 | 17 | a1i |  | 
						
							| 19 | 1 | gzrngunitlem |  | 
						
							| 20 | 13 15 16 18 19 | ltletrd |  | 
						
							| 21 | 20 | gt0ne0d |  | 
						
							| 22 | 12 | abs00ad |  | 
						
							| 23 | 22 | necon3bid |  | 
						
							| 24 | 21 23 | mpbid |  | 
						
							| 25 |  | cnfldinv |  | 
						
							| 26 | 12 24 25 | syl2anc |  | 
						
							| 27 | 10 26 | eqtr3d |  | 
						
							| 28 | 1 | subrgring |  | 
						
							| 29 | 2 28 | ax-mp |  | 
						
							| 30 | 5 8 | unitinvcl |  | 
						
							| 31 | 29 30 | mpan |  | 
						
							| 32 | 27 31 | eqeltrrd |  | 
						
							| 33 | 1 | gzrngunitlem |  | 
						
							| 34 | 32 33 | syl |  | 
						
							| 35 |  | 1cnd |  | 
						
							| 36 | 35 12 24 | absdivd |  | 
						
							| 37 | 34 36 | breqtrd |  | 
						
							| 38 |  | 1div1e1 |  | 
						
							| 39 |  | abs1 |  | 
						
							| 40 | 39 | eqcomi |  | 
						
							| 41 | 40 | oveq1i |  | 
						
							| 42 | 37 38 41 | 3brtr4g |  | 
						
							| 43 |  | lerec |  | 
						
							| 44 | 16 20 15 18 43 | syl22anc |  | 
						
							| 45 | 42 44 | mpbird |  | 
						
							| 46 |  | letri3 |  | 
						
							| 47 | 16 14 46 | sylancl |  | 
						
							| 48 | 45 19 47 | mpbir2and |  | 
						
							| 49 | 6 48 | jca |  | 
						
							| 50 | 11 | adantr |  | 
						
							| 51 |  | simpr |  | 
						
							| 52 |  | ax-1ne0 |  | 
						
							| 53 | 52 | a1i |  | 
						
							| 54 | 51 53 | eqnetrd |  | 
						
							| 55 |  | fveq2 |  | 
						
							| 56 |  | abs0 |  | 
						
							| 57 | 55 56 | eqtrdi |  | 
						
							| 58 | 57 | necon3i |  | 
						
							| 59 | 54 58 | syl |  | 
						
							| 60 |  | eldifsn |  | 
						
							| 61 | 50 59 60 | sylanbrc |  | 
						
							| 62 |  | simpl |  | 
						
							| 63 | 50 59 25 | syl2anc |  | 
						
							| 64 | 50 | absvalsqd |  | 
						
							| 65 | 51 | oveq1d |  | 
						
							| 66 |  | sq1 |  | 
						
							| 67 | 65 66 | eqtrdi |  | 
						
							| 68 | 64 67 | eqtr3d |  | 
						
							| 69 | 68 | oveq1d |  | 
						
							| 70 | 50 | cjcld |  | 
						
							| 71 | 70 50 59 | divcan3d |  | 
						
							| 72 | 63 69 71 | 3eqtr2d |  | 
						
							| 73 |  | gzcjcl |  | 
						
							| 74 | 73 | adantr |  | 
						
							| 75 | 72 74 | eqeltrd |  | 
						
							| 76 |  | cnfldbas |  | 
						
							| 77 |  | cnfld0 |  | 
						
							| 78 |  | cndrng |  | 
						
							| 79 | 76 77 78 | drngui |  | 
						
							| 80 | 1 79 5 7 | subrgunit |  | 
						
							| 81 | 2 80 | ax-mp |  | 
						
							| 82 | 61 62 75 81 | syl3anbrc |  | 
						
							| 83 | 49 82 | impbii |  |