Metamath Proof Explorer


Theorem gzrngunit

Description: The units on ZZ [ _i ] are the gaussian integers with norm 1 . (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypothesis gzrng.1 Z=fld𝑠i
Assertion gzrngunit AUnitZAiA=1

Proof

Step Hyp Ref Expression
1 gzrng.1 Z=fld𝑠i
2 gzsubrg iSubRingfld
3 1 subrgbas iSubRingfldi=BaseZ
4 2 3 ax-mp i=BaseZ
5 eqid UnitZ=UnitZ
6 4 5 unitcl AUnitZAi
7 eqid invrfld=invrfld
8 eqid invrZ=invrZ
9 1 7 5 8 subrginv iSubRingfldAUnitZinvrfldA=invrZA
10 2 9 mpan AUnitZinvrfldA=invrZA
11 gzcn AiA
12 6 11 syl AUnitZA
13 0red AUnitZ0
14 1re 1
15 14 a1i AUnitZ1
16 12 abscld AUnitZA
17 0lt1 0<1
18 17 a1i AUnitZ0<1
19 1 gzrngunitlem AUnitZ1A
20 13 15 16 18 19 ltletrd AUnitZ0<A
21 20 gt0ne0d AUnitZA0
22 12 abs00ad AUnitZA=0A=0
23 22 necon3bid AUnitZA0A0
24 21 23 mpbid AUnitZA0
25 cnfldinv AA0invrfldA=1A
26 12 24 25 syl2anc AUnitZinvrfldA=1A
27 10 26 eqtr3d AUnitZinvrZA=1A
28 1 subrgring iSubRingfldZRing
29 2 28 ax-mp ZRing
30 5 8 unitinvcl ZRingAUnitZinvrZAUnitZ
31 29 30 mpan AUnitZinvrZAUnitZ
32 27 31 eqeltrrd AUnitZ1AUnitZ
33 1 gzrngunitlem 1AUnitZ11A
34 32 33 syl AUnitZ11A
35 1cnd AUnitZ1
36 35 12 24 absdivd AUnitZ1A=1A
37 34 36 breqtrd AUnitZ11A
38 1div1e1 11=1
39 abs1 1=1
40 39 eqcomi 1=1
41 40 oveq1i 1A=1A
42 37 38 41 3brtr4g AUnitZ111A
43 lerec A0<A10<1A1111A
44 16 20 15 18 43 syl22anc AUnitZA1111A
45 42 44 mpbird AUnitZA1
46 letri3 A1A=1A11A
47 16 14 46 sylancl AUnitZA=1A11A
48 45 19 47 mpbir2and AUnitZA=1
49 6 48 jca AUnitZAiA=1
50 11 adantr AiA=1A
51 simpr AiA=1A=1
52 ax-1ne0 10
53 52 a1i AiA=110
54 51 53 eqnetrd AiA=1A0
55 fveq2 A=0A=0
56 abs0 0=0
57 55 56 eqtrdi A=0A=0
58 57 necon3i A0A0
59 54 58 syl AiA=1A0
60 eldifsn A0AA0
61 50 59 60 sylanbrc AiA=1A0
62 simpl AiA=1Ai
63 50 59 25 syl2anc AiA=1invrfldA=1A
64 50 absvalsqd AiA=1A2=AA
65 51 oveq1d AiA=1A2=12
66 sq1 12=1
67 65 66 eqtrdi AiA=1A2=1
68 64 67 eqtr3d AiA=1AA=1
69 68 oveq1d AiA=1AAA=1A
70 50 cjcld AiA=1A
71 70 50 59 divcan3d AiA=1AAA=A
72 63 69 71 3eqtr2d AiA=1invrfldA=A
73 gzcjcl AiAi
74 73 adantr AiA=1Ai
75 72 74 eqeltrd AiA=1invrfldAi
76 cnfldbas =Basefld
77 cnfld0 0=0fld
78 cndrng fldDivRing
79 76 77 78 drngui 0=Unitfld
80 1 79 5 7 subrgunit iSubRingfldAUnitZA0AiinvrfldAi
81 2 80 ax-mp AUnitZA0AiinvrfldAi
82 61 62 75 81 syl3anbrc AiA=1AUnitZ
83 49 82 impbii AUnitZAiA=1