| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gzrng.1 |  | 
						
							| 2 |  | sq1 |  | 
						
							| 3 |  | ax-1ne0 |  | 
						
							| 4 |  | gzsubrg |  | 
						
							| 5 | 1 | subrgring |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | subrgsubg |  | 
						
							| 8 |  | cnfld0 |  | 
						
							| 9 | 1 8 | subg0 |  | 
						
							| 10 | 4 7 9 | mp2b |  | 
						
							| 11 |  | cnfld1 |  | 
						
							| 12 | 1 11 | subrg1 |  | 
						
							| 13 | 4 12 | ax-mp |  | 
						
							| 14 | 6 10 13 | 0unit |  | 
						
							| 15 | 4 5 14 | mp2b |  | 
						
							| 16 | 3 15 | nemtbir |  | 
						
							| 17 | 1 | subrgbas |  | 
						
							| 18 | 4 17 | ax-mp |  | 
						
							| 19 | 18 6 | unitcl |  | 
						
							| 20 |  | gzabssqcl |  | 
						
							| 21 | 19 20 | syl |  | 
						
							| 22 |  | elnn0 |  | 
						
							| 23 | 21 22 | sylib |  | 
						
							| 24 | 23 | ord |  | 
						
							| 25 |  | gzcn |  | 
						
							| 26 | 19 25 | syl |  | 
						
							| 27 | 26 | abscld |  | 
						
							| 28 | 27 | recnd |  | 
						
							| 29 |  | sqeq0 |  | 
						
							| 30 | 28 29 | syl |  | 
						
							| 31 | 26 | abs00ad |  | 
						
							| 32 |  | eleq1 |  | 
						
							| 33 | 32 | biimpcd |  | 
						
							| 34 | 31 33 | sylbid |  | 
						
							| 35 | 30 34 | sylbid |  | 
						
							| 36 | 24 35 | syld |  | 
						
							| 37 | 16 36 | mt3i |  | 
						
							| 38 | 37 | nnge1d |  | 
						
							| 39 | 2 38 | eqbrtrid |  | 
						
							| 40 | 26 | absge0d |  | 
						
							| 41 |  | 1re |  | 
						
							| 42 |  | 0le1 |  | 
						
							| 43 |  | le2sq |  | 
						
							| 44 | 41 42 43 | mpanl12 |  | 
						
							| 45 | 27 40 44 | syl2anc |  | 
						
							| 46 | 39 45 | mpbird |  |