| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zringsub.p |
|- .- = ( -g ` ZZring ) |
| 2 |
|
zcn |
|- ( x e. ZZ -> x e. CC ) |
| 3 |
|
zaddcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x + y ) e. ZZ ) |
| 4 |
|
znegcl |
|- ( x e. ZZ -> -u x e. ZZ ) |
| 5 |
|
0z |
|- 0 e. ZZ |
| 6 |
2 3 4 5
|
cnsubglem |
|- ZZ e. ( SubGrp ` CCfld ) |
| 7 |
|
cnfldsub |
|- - = ( -g ` CCfld ) |
| 8 |
|
df-zring |
|- ZZring = ( CCfld |`s ZZ ) |
| 9 |
7 8 1
|
subgsub |
|- ( ( ZZ e. ( SubGrp ` CCfld ) /\ X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) |
| 10 |
6 9
|
mp3an1 |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( X - Y ) = ( X .- Y ) ) |
| 11 |
10
|
eqcomd |
|- ( ( X e. ZZ /\ Y e. ZZ ) -> ( X .- Y ) = ( X - Y ) ) |