| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zs12no |
|- ( A e. ZZ_s[1/2] -> A e. No ) |
| 2 |
|
zs12no |
|- ( B e. ZZ_s[1/2] -> B e. No ) |
| 3 |
|
subsval |
|- ( ( A e. No /\ B e. No ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
| 4 |
1 2 3
|
syl2an |
|- ( ( A e. ZZ_s[1/2] /\ B e. ZZ_s[1/2] ) -> ( A -s B ) = ( A +s ( -us ` B ) ) ) |
| 5 |
|
zs12negscl |
|- ( B e. ZZ_s[1/2] -> ( -us ` B ) e. ZZ_s[1/2] ) |
| 6 |
|
zs12addscl |
|- ( ( A e. ZZ_s[1/2] /\ ( -us ` B ) e. ZZ_s[1/2] ) -> ( A +s ( -us ` B ) ) e. ZZ_s[1/2] ) |
| 7 |
5 6
|
sylan2 |
|- ( ( A e. ZZ_s[1/2] /\ B e. ZZ_s[1/2] ) -> ( A +s ( -us ` B ) ) e. ZZ_s[1/2] ) |
| 8 |
4 7
|
eqeltrd |
|- ( ( A e. ZZ_s[1/2] /\ B e. ZZ_s[1/2] ) -> ( A -s B ) e. ZZ_s[1/2] ) |