| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elzs12 |
|- ( A e. ZZ_s[1/2] <-> E. a e. ZZ_s E. n e. NN0_s A = ( a /su ( 2s ^su n ) ) ) |
| 2 |
|
2sno |
|- 2s e. No |
| 3 |
|
exps1 |
|- ( 2s e. No -> ( 2s ^su 1s ) = 2s ) |
| 4 |
2 3
|
ax-mp |
|- ( 2s ^su 1s ) = 2s |
| 5 |
4
|
oveq2i |
|- ( ( a /su ( 2s ^su n ) ) /su ( 2s ^su 1s ) ) = ( ( a /su ( 2s ^su n ) ) /su 2s ) |
| 6 |
|
zno |
|- ( a e. ZZ_s -> a e. No ) |
| 7 |
6
|
adantr |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> a e. No ) |
| 8 |
|
simpr |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> n e. NN0_s ) |
| 9 |
|
1n0s |
|- 1s e. NN0_s |
| 10 |
9
|
a1i |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> 1s e. NN0_s ) |
| 11 |
7 8 10
|
pw2divscan4d |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( a /su ( 2s ^su n ) ) = ( ( ( 2s ^su 1s ) x.s a ) /su ( 2s ^su ( n +s 1s ) ) ) ) |
| 12 |
4 2
|
eqeltri |
|- ( 2s ^su 1s ) e. No |
| 13 |
12
|
a1i |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( 2s ^su 1s ) e. No ) |
| 14 |
|
peano2n0s |
|- ( n e. NN0_s -> ( n +s 1s ) e. NN0_s ) |
| 15 |
14
|
adantl |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( n +s 1s ) e. NN0_s ) |
| 16 |
13 7 15
|
pw2divsassd |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( ( ( 2s ^su 1s ) x.s a ) /su ( 2s ^su ( n +s 1s ) ) ) = ( ( 2s ^su 1s ) x.s ( a /su ( 2s ^su ( n +s 1s ) ) ) ) ) |
| 17 |
11 16
|
eqtr2d |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( ( 2s ^su 1s ) x.s ( a /su ( 2s ^su ( n +s 1s ) ) ) ) = ( a /su ( 2s ^su n ) ) ) |
| 18 |
7 8
|
pw2divscld |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( a /su ( 2s ^su n ) ) e. No ) |
| 19 |
7 15
|
pw2divscld |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( a /su ( 2s ^su ( n +s 1s ) ) ) e. No ) |
| 20 |
18 19 10
|
pw2divsmuld |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( ( ( a /su ( 2s ^su n ) ) /su ( 2s ^su 1s ) ) = ( a /su ( 2s ^su ( n +s 1s ) ) ) <-> ( ( 2s ^su 1s ) x.s ( a /su ( 2s ^su ( n +s 1s ) ) ) ) = ( a /su ( 2s ^su n ) ) ) ) |
| 21 |
17 20
|
mpbird |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( ( a /su ( 2s ^su n ) ) /su ( 2s ^su 1s ) ) = ( a /su ( 2s ^su ( n +s 1s ) ) ) ) |
| 22 |
5 21
|
eqtr3id |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( ( a /su ( 2s ^su n ) ) /su 2s ) = ( a /su ( 2s ^su ( n +s 1s ) ) ) ) |
| 23 |
|
oveq1 |
|- ( b = a -> ( b /su ( 2s ^su m ) ) = ( a /su ( 2s ^su m ) ) ) |
| 24 |
23
|
eqeq2d |
|- ( b = a -> ( ( a /su ( 2s ^su ( n +s 1s ) ) ) = ( b /su ( 2s ^su m ) ) <-> ( a /su ( 2s ^su ( n +s 1s ) ) ) = ( a /su ( 2s ^su m ) ) ) ) |
| 25 |
|
oveq2 |
|- ( m = ( n +s 1s ) -> ( 2s ^su m ) = ( 2s ^su ( n +s 1s ) ) ) |
| 26 |
25
|
oveq2d |
|- ( m = ( n +s 1s ) -> ( a /su ( 2s ^su m ) ) = ( a /su ( 2s ^su ( n +s 1s ) ) ) ) |
| 27 |
26
|
eqeq2d |
|- ( m = ( n +s 1s ) -> ( ( a /su ( 2s ^su ( n +s 1s ) ) ) = ( a /su ( 2s ^su m ) ) <-> ( a /su ( 2s ^su ( n +s 1s ) ) ) = ( a /su ( 2s ^su ( n +s 1s ) ) ) ) ) |
| 28 |
|
simpl |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> a e. ZZ_s ) |
| 29 |
|
eqidd |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( a /su ( 2s ^su ( n +s 1s ) ) ) = ( a /su ( 2s ^su ( n +s 1s ) ) ) ) |
| 30 |
24 27 28 15 29
|
2rspcedvdw |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> E. b e. ZZ_s E. m e. NN0_s ( a /su ( 2s ^su ( n +s 1s ) ) ) = ( b /su ( 2s ^su m ) ) ) |
| 31 |
|
elzs12 |
|- ( ( a /su ( 2s ^su ( n +s 1s ) ) ) e. ZZ_s[1/2] <-> E. b e. ZZ_s E. m e. NN0_s ( a /su ( 2s ^su ( n +s 1s ) ) ) = ( b /su ( 2s ^su m ) ) ) |
| 32 |
30 31
|
sylibr |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( a /su ( 2s ^su ( n +s 1s ) ) ) e. ZZ_s[1/2] ) |
| 33 |
22 32
|
eqeltrd |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( ( a /su ( 2s ^su n ) ) /su 2s ) e. ZZ_s[1/2] ) |
| 34 |
|
oveq1 |
|- ( A = ( a /su ( 2s ^su n ) ) -> ( A /su 2s ) = ( ( a /su ( 2s ^su n ) ) /su 2s ) ) |
| 35 |
34
|
eleq1d |
|- ( A = ( a /su ( 2s ^su n ) ) -> ( ( A /su 2s ) e. ZZ_s[1/2] <-> ( ( a /su ( 2s ^su n ) ) /su 2s ) e. ZZ_s[1/2] ) ) |
| 36 |
33 35
|
syl5ibrcom |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( A = ( a /su ( 2s ^su n ) ) -> ( A /su 2s ) e. ZZ_s[1/2] ) ) |
| 37 |
36
|
rexlimivv |
|- ( E. a e. ZZ_s E. n e. NN0_s A = ( a /su ( 2s ^su n ) ) -> ( A /su 2s ) e. ZZ_s[1/2] ) |
| 38 |
1 37
|
sylbi |
|- ( A e. ZZ_s[1/2] -> ( A /su 2s ) e. ZZ_s[1/2] ) |