Metamath Proof Explorer


Theorem zs12half

Description: Half of a dyadic is a dyadic. (Contributed by Scott Fenton, 11-Dec-2025)

Ref Expression
Assertion zs12half ( 𝐴 ∈ ℤs[1/2] → ( 𝐴 /su 2s ) ∈ ℤs[1/2] )

Proof

Step Hyp Ref Expression
1 elzs12 ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2ss 𝑛 ) ) )
2 2sno 2s No
3 exps1 ( 2s No → ( 2ss 1s ) = 2s )
4 2 3 ax-mp ( 2ss 1s ) = 2s
5 4 oveq2i ( ( 𝑎 /su ( 2ss 𝑛 ) ) /su ( 2ss 1s ) ) = ( ( 𝑎 /su ( 2ss 𝑛 ) ) /su 2s )
6 zno ( 𝑎 ∈ ℤs𝑎 No )
7 6 adantr ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → 𝑎 No )
8 simpr ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → 𝑛 ∈ ℕ0s )
9 1n0s 1s ∈ ℕ0s
10 9 a1i ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → 1s ∈ ℕ0s )
11 7 8 10 pw2divscan4d ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( 𝑎 /su ( 2ss 𝑛 ) ) = ( ( ( 2ss 1s ) ·s 𝑎 ) /su ( 2ss ( 𝑛 +s 1s ) ) ) )
12 4 2 eqeltri ( 2ss 1s ) ∈ No
13 12 a1i ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( 2ss 1s ) ∈ No )
14 peano2n0s ( 𝑛 ∈ ℕ0s → ( 𝑛 +s 1s ) ∈ ℕ0s )
15 14 adantl ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( 𝑛 +s 1s ) ∈ ℕ0s )
16 13 7 15 pw2divsassd ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( ( ( 2ss 1s ) ·s 𝑎 ) /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( ( 2ss 1s ) ·s ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
17 11 16 eqtr2d ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( ( 2ss 1s ) ·s ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( 𝑎 /su ( 2ss 𝑛 ) ) )
18 7 8 pw2divscld ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( 𝑎 /su ( 2ss 𝑛 ) ) ∈ No )
19 7 15 pw2divscld ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ No )
20 18 19 10 pw2divsmuld ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( ( ( 𝑎 /su ( 2ss 𝑛 ) ) /su ( 2ss 1s ) ) = ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) ↔ ( ( 2ss 1s ) ·s ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) ) = ( 𝑎 /su ( 2ss 𝑛 ) ) ) )
21 17 20 mpbird ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( ( 𝑎 /su ( 2ss 𝑛 ) ) /su ( 2ss 1s ) ) = ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) )
22 5 21 eqtr3id ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( ( 𝑎 /su ( 2ss 𝑛 ) ) /su 2s ) = ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) )
23 oveq1 ( 𝑏 = 𝑎 → ( 𝑏 /su ( 2ss 𝑚 ) ) = ( 𝑎 /su ( 2ss 𝑚 ) ) )
24 23 eqeq2d ( 𝑏 = 𝑎 → ( ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( 𝑏 /su ( 2ss 𝑚 ) ) ↔ ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( 𝑎 /su ( 2ss 𝑚 ) ) ) )
25 oveq2 ( 𝑚 = ( 𝑛 +s 1s ) → ( 2ss 𝑚 ) = ( 2ss ( 𝑛 +s 1s ) ) )
26 25 oveq2d ( 𝑚 = ( 𝑛 +s 1s ) → ( 𝑎 /su ( 2ss 𝑚 ) ) = ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) )
27 26 eqeq2d ( 𝑚 = ( 𝑛 +s 1s ) → ( ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( 𝑎 /su ( 2ss 𝑚 ) ) ↔ ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) ) )
28 simpl ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → 𝑎 ∈ ℤs )
29 eqidd ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) )
30 24 27 28 15 29 2rspcedvdw ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ∃ 𝑏 ∈ ℤs𝑚 ∈ ℕ0s ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( 𝑏 /su ( 2ss 𝑚 ) ) )
31 elzs12 ( ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ ℤs[1/2] ↔ ∃ 𝑏 ∈ ℤs𝑚 ∈ ℕ0s ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) = ( 𝑏 /su ( 2ss 𝑚 ) ) )
32 30 31 sylibr ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( 𝑎 /su ( 2ss ( 𝑛 +s 1s ) ) ) ∈ ℤs[1/2] )
33 22 32 eqeltrd ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( ( 𝑎 /su ( 2ss 𝑛 ) ) /su 2s ) ∈ ℤs[1/2] )
34 oveq1 ( 𝐴 = ( 𝑎 /su ( 2ss 𝑛 ) ) → ( 𝐴 /su 2s ) = ( ( 𝑎 /su ( 2ss 𝑛 ) ) /su 2s ) )
35 34 eleq1d ( 𝐴 = ( 𝑎 /su ( 2ss 𝑛 ) ) → ( ( 𝐴 /su 2s ) ∈ ℤs[1/2] ↔ ( ( 𝑎 /su ( 2ss 𝑛 ) ) /su 2s ) ∈ ℤs[1/2] ) )
36 33 35 syl5ibrcom ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( 𝐴 = ( 𝑎 /su ( 2ss 𝑛 ) ) → ( 𝐴 /su 2s ) ∈ ℤs[1/2] ) )
37 36 rexlimivv ( ∃ 𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2ss 𝑛 ) ) → ( 𝐴 /su 2s ) ∈ ℤs[1/2] )
38 1 37 sylbi ( 𝐴 ∈ ℤs[1/2] → ( 𝐴 /su 2s ) ∈ ℤs[1/2] )