| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divscan4d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
pw2divscan4d.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
| 3 |
|
pw2divscan4d.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℕ0s ) |
| 4 |
|
2sno |
⊢ 2s ∈ No |
| 5 |
|
expadds |
⊢ ( ( 2s ∈ No ∧ 𝑁 ∈ ℕ0s ∧ 𝑀 ∈ ℕ0s ) → ( 2s ↑s ( 𝑁 +s 𝑀 ) ) = ( ( 2s ↑s 𝑁 ) ·s ( 2s ↑s 𝑀 ) ) ) |
| 6 |
4 2 3 5
|
mp3an2i |
⊢ ( 𝜑 → ( 2s ↑s ( 𝑁 +s 𝑀 ) ) = ( ( 2s ↑s 𝑁 ) ·s ( 2s ↑s 𝑀 ) ) ) |
| 7 |
6
|
oveq1d |
⊢ ( 𝜑 → ( ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ·s 𝐴 ) = ( ( ( 2s ↑s 𝑁 ) ·s ( 2s ↑s 𝑀 ) ) ·s 𝐴 ) ) |
| 8 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑁 ∈ ℕ0s ) → ( 2s ↑s 𝑁 ) ∈ No ) |
| 9 |
4 2 8
|
sylancr |
⊢ ( 𝜑 → ( 2s ↑s 𝑁 ) ∈ No ) |
| 10 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑀 ∈ ℕ0s ) → ( 2s ↑s 𝑀 ) ∈ No ) |
| 11 |
4 3 10
|
sylancr |
⊢ ( 𝜑 → ( 2s ↑s 𝑀 ) ∈ No ) |
| 12 |
9 11 1
|
mulsassd |
⊢ ( 𝜑 → ( ( ( 2s ↑s 𝑁 ) ·s ( 2s ↑s 𝑀 ) ) ·s 𝐴 ) = ( ( 2s ↑s 𝑁 ) ·s ( ( 2s ↑s 𝑀 ) ·s 𝐴 ) ) ) |
| 13 |
7 12
|
eqtrd |
⊢ ( 𝜑 → ( ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ·s 𝐴 ) = ( ( 2s ↑s 𝑁 ) ·s ( ( 2s ↑s 𝑀 ) ·s 𝐴 ) ) ) |
| 14 |
13
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ·s 𝐴 ) /su ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ) = ( ( ( 2s ↑s 𝑁 ) ·s ( ( 2s ↑s 𝑀 ) ·s 𝐴 ) ) /su ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ) ) |
| 15 |
|
n0addscl |
⊢ ( ( 𝑁 ∈ ℕ0s ∧ 𝑀 ∈ ℕ0s ) → ( 𝑁 +s 𝑀 ) ∈ ℕ0s ) |
| 16 |
2 3 15
|
syl2anc |
⊢ ( 𝜑 → ( 𝑁 +s 𝑀 ) ∈ ℕ0s ) |
| 17 |
1 16
|
pw2divscan3d |
⊢ ( 𝜑 → ( ( ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ·s 𝐴 ) /su ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ) = 𝐴 ) |
| 18 |
11 1
|
mulscld |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑀 ) ·s 𝐴 ) ∈ No ) |
| 19 |
9 18 16
|
pw2divsassd |
⊢ ( 𝜑 → ( ( ( 2s ↑s 𝑁 ) ·s ( ( 2s ↑s 𝑀 ) ·s 𝐴 ) ) /su ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ) = ( ( 2s ↑s 𝑁 ) ·s ( ( ( 2s ↑s 𝑀 ) ·s 𝐴 ) /su ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ) ) ) |
| 20 |
14 17 19
|
3eqtr3rd |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s ( ( ( 2s ↑s 𝑀 ) ·s 𝐴 ) /su ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ) ) = 𝐴 ) |
| 21 |
18 16
|
pw2divscld |
⊢ ( 𝜑 → ( ( ( 2s ↑s 𝑀 ) ·s 𝐴 ) /su ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ) ∈ No ) |
| 22 |
1 21 2
|
pw2divsmuld |
⊢ ( 𝜑 → ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) = ( ( ( 2s ↑s 𝑀 ) ·s 𝐴 ) /su ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ) ↔ ( ( 2s ↑s 𝑁 ) ·s ( ( ( 2s ↑s 𝑀 ) ·s 𝐴 ) /su ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ) ) = 𝐴 ) ) |
| 23 |
20 22
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 /su ( 2s ↑s 𝑁 ) ) = ( ( ( 2s ↑s 𝑀 ) ·s 𝐴 ) /su ( 2s ↑s ( 𝑁 +s 𝑀 ) ) ) ) |