| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2gt0divsd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
pw2gt0divsd.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
| 3 |
|
0sno |
⊢ 0s ∈ No |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → 0s ∈ No ) |
| 5 |
1 2
|
pw2divscld |
⊢ ( 𝜑 → ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ∈ No ) |
| 6 |
|
2sno |
⊢ 2s ∈ No |
| 7 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑁 ∈ ℕ0s ) → ( 2s ↑s 𝑁 ) ∈ No ) |
| 8 |
6 2 7
|
sylancr |
⊢ ( 𝜑 → ( 2s ↑s 𝑁 ) ∈ No ) |
| 9 |
|
2nns |
⊢ 2s ∈ ℕs |
| 10 |
|
nnsgt0 |
⊢ ( 2s ∈ ℕs → 0s <s 2s ) |
| 11 |
9 10
|
ax-mp |
⊢ 0s <s 2s |
| 12 |
|
expsgt0 |
⊢ ( ( 2s ∈ No ∧ 𝑁 ∈ ℕ0s ∧ 0s <s 2s ) → 0s <s ( 2s ↑s 𝑁 ) ) |
| 13 |
6 11 12
|
mp3an13 |
⊢ ( 𝑁 ∈ ℕ0s → 0s <s ( 2s ↑s 𝑁 ) ) |
| 14 |
2 13
|
syl |
⊢ ( 𝜑 → 0s <s ( 2s ↑s 𝑁 ) ) |
| 15 |
4 5 8 14
|
sltmul2d |
⊢ ( 𝜑 → ( 0s <s ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ↔ ( ( 2s ↑s 𝑁 ) ·s 0s ) <s ( ( 2s ↑s 𝑁 ) ·s ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) ) ) |
| 16 |
|
muls01 |
⊢ ( ( 2s ↑s 𝑁 ) ∈ No → ( ( 2s ↑s 𝑁 ) ·s 0s ) = 0s ) |
| 17 |
8 16
|
syl |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s 0s ) = 0s ) |
| 18 |
1 2
|
pw2divscan2d |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) = 𝐴 ) |
| 19 |
17 18
|
breq12d |
⊢ ( 𝜑 → ( ( ( 2s ↑s 𝑁 ) ·s 0s ) <s ( ( 2s ↑s 𝑁 ) ·s ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) ↔ 0s <s 𝐴 ) ) |
| 20 |
15 19
|
bitr2d |
⊢ ( 𝜑 → ( 0s <s 𝐴 ↔ 0s <s ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) ) |