Metamath Proof Explorer


Theorem pw2gt0divsd

Description: Division of a positive surreal by a power of two. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses pw2gt0divsd.1
|- ( ph -> A e. No )
pw2gt0divsd.2
|- ( ph -> N e. NN0_s )
Assertion pw2gt0divsd
|- ( ph -> ( 0s  0s 

Proof

Step Hyp Ref Expression
1 pw2gt0divsd.1
 |-  ( ph -> A e. No )
2 pw2gt0divsd.2
 |-  ( ph -> N e. NN0_s )
3 0sno
 |-  0s e. No
4 3 a1i
 |-  ( ph -> 0s e. No )
5 1 2 pw2divscld
 |-  ( ph -> ( A /su ( 2s ^su N ) ) e. No )
6 2sno
 |-  2s e. No
7 expscl
 |-  ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No )
8 6 2 7 sylancr
 |-  ( ph -> ( 2s ^su N ) e. No )
9 2nns
 |-  2s e. NN_s
10 nnsgt0
 |-  ( 2s e. NN_s -> 0s 
11 9 10 ax-mp
 |-  0s 
12 expsgt0
 |-  ( ( 2s e. No /\ N e. NN0_s /\ 0s  0s 
13 6 11 12 mp3an13
 |-  ( N e. NN0_s -> 0s 
14 2 13 syl
 |-  ( ph -> 0s 
15 4 5 8 14 sltmul2d
 |-  ( ph -> ( 0s  ( ( 2s ^su N ) x.s 0s ) 
16 muls01
 |-  ( ( 2s ^su N ) e. No -> ( ( 2s ^su N ) x.s 0s ) = 0s )
17 8 16 syl
 |-  ( ph -> ( ( 2s ^su N ) x.s 0s ) = 0s )
18 1 2 pw2divscan2d
 |-  ( ph -> ( ( 2s ^su N ) x.s ( A /su ( 2s ^su N ) ) ) = A )
19 17 18 breq12d
 |-  ( ph -> ( ( ( 2s ^su N ) x.s 0s )  0s 
20 15 19 bitr2d
 |-  ( ph -> ( 0s  0s