| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divscan3d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
pw2divscan3d.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
| 3 |
|
eqid |
⊢ ( ( 2s ↑s 𝑁 ) ·s 𝐴 ) = ( ( 2s ↑s 𝑁 ) ·s 𝐴 ) |
| 4 |
|
2sno |
⊢ 2s ∈ No |
| 5 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑁 ∈ ℕ0s ) → ( 2s ↑s 𝑁 ) ∈ No ) |
| 6 |
4 2 5
|
sylancr |
⊢ ( 𝜑 → ( 2s ↑s 𝑁 ) ∈ No ) |
| 7 |
6 1
|
mulscld |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s 𝐴 ) ∈ No ) |
| 8 |
7 1 2
|
pw2divsmuld |
⊢ ( 𝜑 → ( ( ( ( 2s ↑s 𝑁 ) ·s 𝐴 ) /su ( 2s ↑s 𝑁 ) ) = 𝐴 ↔ ( ( 2s ↑s 𝑁 ) ·s 𝐴 ) = ( ( 2s ↑s 𝑁 ) ·s 𝐴 ) ) ) |
| 9 |
3 8
|
mpbiri |
⊢ ( 𝜑 → ( ( ( 2s ↑s 𝑁 ) ·s 𝐴 ) /su ( 2s ↑s 𝑁 ) ) = 𝐴 ) |