Metamath Proof Explorer


Theorem pw2divscan3d

Description: Cancellation law for surreal division by powers of two. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses pw2divscan3d.1 ( 𝜑𝐴 No )
pw2divscan3d.2 ( 𝜑𝑁 ∈ ℕ0s )
Assertion pw2divscan3d ( 𝜑 → ( ( ( 2ss 𝑁 ) ·s 𝐴 ) /su ( 2ss 𝑁 ) ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 pw2divscan3d.1 ( 𝜑𝐴 No )
2 pw2divscan3d.2 ( 𝜑𝑁 ∈ ℕ0s )
3 eqid ( ( 2ss 𝑁 ) ·s 𝐴 ) = ( ( 2ss 𝑁 ) ·s 𝐴 )
4 2sno 2s No
5 expscl ( ( 2s No 𝑁 ∈ ℕ0s ) → ( 2ss 𝑁 ) ∈ No )
6 4 2 5 sylancr ( 𝜑 → ( 2ss 𝑁 ) ∈ No )
7 6 1 mulscld ( 𝜑 → ( ( 2ss 𝑁 ) ·s 𝐴 ) ∈ No )
8 7 1 2 pw2divsmuld ( 𝜑 → ( ( ( ( 2ss 𝑁 ) ·s 𝐴 ) /su ( 2ss 𝑁 ) ) = 𝐴 ↔ ( ( 2ss 𝑁 ) ·s 𝐴 ) = ( ( 2ss 𝑁 ) ·s 𝐴 ) ) )
9 3 8 mpbiri ( 𝜑 → ( ( ( 2ss 𝑁 ) ·s 𝐴 ) /su ( 2ss 𝑁 ) ) = 𝐴 )