| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divsmuld.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
pw2divsmuld.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
pw2divsmuld.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
| 4 |
|
2sno |
⊢ 2s ∈ No |
| 5 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑁 ∈ ℕ0s ) → ( 2s ↑s 𝑁 ) ∈ No ) |
| 6 |
4 3 5
|
sylancr |
⊢ ( 𝜑 → ( 2s ↑s 𝑁 ) ∈ No ) |
| 7 |
|
2ne0s |
⊢ 2s ≠ 0s |
| 8 |
|
expsne0 |
⊢ ( ( 2s ∈ No ∧ 2s ≠ 0s ∧ 𝑁 ∈ ℕ0s ) → ( 2s ↑s 𝑁 ) ≠ 0s ) |
| 9 |
4 7 3 8
|
mp3an12i |
⊢ ( 𝜑 → ( 2s ↑s 𝑁 ) ≠ 0s ) |
| 10 |
|
pw2recs |
⊢ ( 𝑁 ∈ ℕ0s → ∃ 𝑥 ∈ No ( ( 2s ↑s 𝑁 ) ·s 𝑥 ) = 1s ) |
| 11 |
3 10
|
syl |
⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( ( 2s ↑s 𝑁 ) ·s 𝑥 ) = 1s ) |
| 12 |
1 2 6 9 11
|
divsmulwd |
⊢ ( 𝜑 → ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) = 𝐵 ↔ ( ( 2s ↑s 𝑁 ) ·s 𝐵 ) = 𝐴 ) ) |