Metamath Proof Explorer


Theorem pw2divsmuld

Description: Relationship between surreal division and multiplication for powers of two. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses pw2divsmuld.1 ( 𝜑𝐴 No )
pw2divsmuld.2 ( 𝜑𝐵 No )
pw2divsmuld.3 ( 𝜑𝑁 ∈ ℕ0s )
Assertion pw2divsmuld ( 𝜑 → ( ( 𝐴 /su ( 2ss 𝑁 ) ) = 𝐵 ↔ ( ( 2ss 𝑁 ) ·s 𝐵 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 pw2divsmuld.1 ( 𝜑𝐴 No )
2 pw2divsmuld.2 ( 𝜑𝐵 No )
3 pw2divsmuld.3 ( 𝜑𝑁 ∈ ℕ0s )
4 2sno 2s No
5 expscl ( ( 2s No 𝑁 ∈ ℕ0s ) → ( 2ss 𝑁 ) ∈ No )
6 4 3 5 sylancr ( 𝜑 → ( 2ss 𝑁 ) ∈ No )
7 2ne0s 2s ≠ 0s
8 expsne0 ( ( 2s No ∧ 2s ≠ 0s𝑁 ∈ ℕ0s ) → ( 2ss 𝑁 ) ≠ 0s )
9 4 7 3 8 mp3an12i ( 𝜑 → ( 2ss 𝑁 ) ≠ 0s )
10 pw2recs ( 𝑁 ∈ ℕ0s → ∃ 𝑥 No ( ( 2ss 𝑁 ) ·s 𝑥 ) = 1s )
11 3 10 syl ( 𝜑 → ∃ 𝑥 No ( ( 2ss 𝑁 ) ·s 𝑥 ) = 1s )
12 1 2 6 9 11 divsmulwd ( 𝜑 → ( ( 𝐴 /su ( 2ss 𝑁 ) ) = 𝐵 ↔ ( ( 2ss 𝑁 ) ·s 𝐵 ) = 𝐴 ) )