Metamath Proof Explorer


Theorem pw2divsmuld

Description: Relationship between surreal division and multiplication for powers of two. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses pw2divsmuld.1
|- ( ph -> A e. No )
pw2divsmuld.2
|- ( ph -> B e. No )
pw2divsmuld.3
|- ( ph -> N e. NN0_s )
Assertion pw2divsmuld
|- ( ph -> ( ( A /su ( 2s ^su N ) ) = B <-> ( ( 2s ^su N ) x.s B ) = A ) )

Proof

Step Hyp Ref Expression
1 pw2divsmuld.1
 |-  ( ph -> A e. No )
2 pw2divsmuld.2
 |-  ( ph -> B e. No )
3 pw2divsmuld.3
 |-  ( ph -> N e. NN0_s )
4 2sno
 |-  2s e. No
5 expscl
 |-  ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No )
6 4 3 5 sylancr
 |-  ( ph -> ( 2s ^su N ) e. No )
7 2ne0s
 |-  2s =/= 0s
8 expsne0
 |-  ( ( 2s e. No /\ 2s =/= 0s /\ N e. NN0_s ) -> ( 2s ^su N ) =/= 0s )
9 4 7 3 8 mp3an12i
 |-  ( ph -> ( 2s ^su N ) =/= 0s )
10 pw2recs
 |-  ( N e. NN0_s -> E. x e. No ( ( 2s ^su N ) x.s x ) = 1s )
11 3 10 syl
 |-  ( ph -> E. x e. No ( ( 2s ^su N ) x.s x ) = 1s )
12 1 2 6 9 11 divsmulwd
 |-  ( ph -> ( ( A /su ( 2s ^su N ) ) = B <-> ( ( 2s ^su N ) x.s B ) = A ) )