| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divscan3d.1 |
|- ( ph -> A e. No ) |
| 2 |
|
pw2divscan3d.2 |
|- ( ph -> N e. NN0_s ) |
| 3 |
|
eqid |
|- ( ( 2s ^su N ) x.s A ) = ( ( 2s ^su N ) x.s A ) |
| 4 |
|
2sno |
|- 2s e. No |
| 5 |
|
expscl |
|- ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No ) |
| 6 |
4 2 5
|
sylancr |
|- ( ph -> ( 2s ^su N ) e. No ) |
| 7 |
6 1
|
mulscld |
|- ( ph -> ( ( 2s ^su N ) x.s A ) e. No ) |
| 8 |
7 1 2
|
pw2divsmuld |
|- ( ph -> ( ( ( ( 2s ^su N ) x.s A ) /su ( 2s ^su N ) ) = A <-> ( ( 2s ^su N ) x.s A ) = ( ( 2s ^su N ) x.s A ) ) ) |
| 9 |
3 8
|
mpbiri |
|- ( ph -> ( ( ( 2s ^su N ) x.s A ) /su ( 2s ^su N ) ) = A ) |