Metamath Proof Explorer


Theorem pw2divscan3d

Description: Cancellation law for surreal division by powers of two. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses pw2divscan3d.1
|- ( ph -> A e. No )
pw2divscan3d.2
|- ( ph -> N e. NN0_s )
Assertion pw2divscan3d
|- ( ph -> ( ( ( 2s ^su N ) x.s A ) /su ( 2s ^su N ) ) = A )

Proof

Step Hyp Ref Expression
1 pw2divscan3d.1
 |-  ( ph -> A e. No )
2 pw2divscan3d.2
 |-  ( ph -> N e. NN0_s )
3 eqid
 |-  ( ( 2s ^su N ) x.s A ) = ( ( 2s ^su N ) x.s A )
4 2sno
 |-  2s e. No
5 expscl
 |-  ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No )
6 4 2 5 sylancr
 |-  ( ph -> ( 2s ^su N ) e. No )
7 6 1 mulscld
 |-  ( ph -> ( ( 2s ^su N ) x.s A ) e. No )
8 7 1 2 pw2divsmuld
 |-  ( ph -> ( ( ( ( 2s ^su N ) x.s A ) /su ( 2s ^su N ) ) = A <-> ( ( 2s ^su N ) x.s A ) = ( ( 2s ^su N ) x.s A ) ) )
9 3 8 mpbiri
 |-  ( ph -> ( ( ( 2s ^su N ) x.s A ) /su ( 2s ^su N ) ) = A )