| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divscan4d.1 |
|- ( ph -> A e. No ) |
| 2 |
|
pw2divscan4d.2 |
|- ( ph -> N e. NN0_s ) |
| 3 |
|
pw2divscan4d.3 |
|- ( ph -> M e. NN0_s ) |
| 4 |
|
2sno |
|- 2s e. No |
| 5 |
|
expadds |
|- ( ( 2s e. No /\ N e. NN0_s /\ M e. NN0_s ) -> ( 2s ^su ( N +s M ) ) = ( ( 2s ^su N ) x.s ( 2s ^su M ) ) ) |
| 6 |
4 2 3 5
|
mp3an2i |
|- ( ph -> ( 2s ^su ( N +s M ) ) = ( ( 2s ^su N ) x.s ( 2s ^su M ) ) ) |
| 7 |
6
|
oveq1d |
|- ( ph -> ( ( 2s ^su ( N +s M ) ) x.s A ) = ( ( ( 2s ^su N ) x.s ( 2s ^su M ) ) x.s A ) ) |
| 8 |
|
expscl |
|- ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No ) |
| 9 |
4 2 8
|
sylancr |
|- ( ph -> ( 2s ^su N ) e. No ) |
| 10 |
|
expscl |
|- ( ( 2s e. No /\ M e. NN0_s ) -> ( 2s ^su M ) e. No ) |
| 11 |
4 3 10
|
sylancr |
|- ( ph -> ( 2s ^su M ) e. No ) |
| 12 |
9 11 1
|
mulsassd |
|- ( ph -> ( ( ( 2s ^su N ) x.s ( 2s ^su M ) ) x.s A ) = ( ( 2s ^su N ) x.s ( ( 2s ^su M ) x.s A ) ) ) |
| 13 |
7 12
|
eqtrd |
|- ( ph -> ( ( 2s ^su ( N +s M ) ) x.s A ) = ( ( 2s ^su N ) x.s ( ( 2s ^su M ) x.s A ) ) ) |
| 14 |
13
|
oveq1d |
|- ( ph -> ( ( ( 2s ^su ( N +s M ) ) x.s A ) /su ( 2s ^su ( N +s M ) ) ) = ( ( ( 2s ^su N ) x.s ( ( 2s ^su M ) x.s A ) ) /su ( 2s ^su ( N +s M ) ) ) ) |
| 15 |
|
n0addscl |
|- ( ( N e. NN0_s /\ M e. NN0_s ) -> ( N +s M ) e. NN0_s ) |
| 16 |
2 3 15
|
syl2anc |
|- ( ph -> ( N +s M ) e. NN0_s ) |
| 17 |
1 16
|
pw2divscan3d |
|- ( ph -> ( ( ( 2s ^su ( N +s M ) ) x.s A ) /su ( 2s ^su ( N +s M ) ) ) = A ) |
| 18 |
11 1
|
mulscld |
|- ( ph -> ( ( 2s ^su M ) x.s A ) e. No ) |
| 19 |
9 18 16
|
pw2divsassd |
|- ( ph -> ( ( ( 2s ^su N ) x.s ( ( 2s ^su M ) x.s A ) ) /su ( 2s ^su ( N +s M ) ) ) = ( ( 2s ^su N ) x.s ( ( ( 2s ^su M ) x.s A ) /su ( 2s ^su ( N +s M ) ) ) ) ) |
| 20 |
14 17 19
|
3eqtr3rd |
|- ( ph -> ( ( 2s ^su N ) x.s ( ( ( 2s ^su M ) x.s A ) /su ( 2s ^su ( N +s M ) ) ) ) = A ) |
| 21 |
18 16
|
pw2divscld |
|- ( ph -> ( ( ( 2s ^su M ) x.s A ) /su ( 2s ^su ( N +s M ) ) ) e. No ) |
| 22 |
1 21 2
|
pw2divsmuld |
|- ( ph -> ( ( A /su ( 2s ^su N ) ) = ( ( ( 2s ^su M ) x.s A ) /su ( 2s ^su ( N +s M ) ) ) <-> ( ( 2s ^su N ) x.s ( ( ( 2s ^su M ) x.s A ) /su ( 2s ^su ( N +s M ) ) ) ) = A ) ) |
| 23 |
20 22
|
mpbird |
|- ( ph -> ( A /su ( 2s ^su N ) ) = ( ( ( 2s ^su M ) x.s A ) /su ( 2s ^su ( N +s M ) ) ) ) |