Description: A surreal is a dyadic fraction iff its negative is. (Contributed by Scott Fenton, 9-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zs12negsclb | ⊢ ( 𝐴 ∈ No → ( 𝐴 ∈ ℤs[1/2] ↔ ( -us ‘ 𝐴 ) ∈ ℤs[1/2] ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zs12negscl | ⊢ ( 𝐴 ∈ ℤs[1/2] → ( -us ‘ 𝐴 ) ∈ ℤs[1/2] ) | |
| 2 | zs12negscl | ⊢ ( ( -us ‘ 𝐴 ) ∈ ℤs[1/2] → ( -us ‘ ( -us ‘ 𝐴 ) ) ∈ ℤs[1/2] ) | |
| 3 | negnegs | ⊢ ( 𝐴 ∈ No → ( -us ‘ ( -us ‘ 𝐴 ) ) = 𝐴 ) | |
| 4 | 3 | eleq1d | ⊢ ( 𝐴 ∈ No → ( ( -us ‘ ( -us ‘ 𝐴 ) ) ∈ ℤs[1/2] ↔ 𝐴 ∈ ℤs[1/2] ) ) |
| 5 | 2 4 | imbitrid | ⊢ ( 𝐴 ∈ No → ( ( -us ‘ 𝐴 ) ∈ ℤs[1/2] → 𝐴 ∈ ℤs[1/2] ) ) |
| 6 | 1 5 | impbid2 | ⊢ ( 𝐴 ∈ No → ( 𝐴 ∈ ℤs[1/2] ↔ ( -us ‘ 𝐴 ) ∈ ℤs[1/2] ) ) |