Metamath Proof Explorer


Theorem zs12negsclb

Description: A surreal is a dyadic fraction iff its negative is. (Contributed by Scott Fenton, 9-Nov-2025)

Ref Expression
Assertion zs12negsclb ( 𝐴 No → ( 𝐴 ∈ ℤs[1/2] ↔ ( -us𝐴 ) ∈ ℤs[1/2] ) )

Proof

Step Hyp Ref Expression
1 zs12negscl ( 𝐴 ∈ ℤs[1/2] → ( -us𝐴 ) ∈ ℤs[1/2] )
2 zs12negscl ( ( -us𝐴 ) ∈ ℤs[1/2] → ( -us ‘ ( -us𝐴 ) ) ∈ ℤs[1/2] )
3 negnegs ( 𝐴 No → ( -us ‘ ( -us𝐴 ) ) = 𝐴 )
4 3 eleq1d ( 𝐴 No → ( ( -us ‘ ( -us𝐴 ) ) ∈ ℤs[1/2] ↔ 𝐴 ∈ ℤs[1/2] ) )
5 2 4 imbitrid ( 𝐴 No → ( ( -us𝐴 ) ∈ ℤs[1/2] → 𝐴 ∈ ℤs[1/2] ) )
6 1 5 impbid2 ( 𝐴 No → ( 𝐴 ∈ ℤs[1/2] ↔ ( -us𝐴 ) ∈ ℤs[1/2] ) )