Metamath Proof Explorer


Theorem zs12negsclb

Description: A surreal is a dyadic fraction iff its negative is. (Contributed by Scott Fenton, 9-Nov-2025)

Ref Expression
Assertion zs12negsclb Could not format assertion : No typesetting found for |- ( A e. No -> ( A e. ZZ_s[1/2] <-> ( -us ` A ) e. ZZ_s[1/2] ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 zs12negscl Could not format ( A e. ZZ_s[1/2] -> ( -us ` A ) e. ZZ_s[1/2] ) : No typesetting found for |- ( A e. ZZ_s[1/2] -> ( -us ` A ) e. ZZ_s[1/2] ) with typecode |-
2 zs12negscl Could not format ( ( -us ` A ) e. ZZ_s[1/2] -> ( -us ` ( -us ` A ) ) e. ZZ_s[1/2] ) : No typesetting found for |- ( ( -us ` A ) e. ZZ_s[1/2] -> ( -us ` ( -us ` A ) ) e. ZZ_s[1/2] ) with typecode |-
3 negnegs A No + s + s A = A
4 3 eleq1d Could not format ( A e. No -> ( ( -us ` ( -us ` A ) ) e. ZZ_s[1/2] <-> A e. ZZ_s[1/2] ) ) : No typesetting found for |- ( A e. No -> ( ( -us ` ( -us ` A ) ) e. ZZ_s[1/2] <-> A e. ZZ_s[1/2] ) ) with typecode |-
5 2 4 imbitrid Could not format ( A e. No -> ( ( -us ` A ) e. ZZ_s[1/2] -> A e. ZZ_s[1/2] ) ) : No typesetting found for |- ( A e. No -> ( ( -us ` A ) e. ZZ_s[1/2] -> A e. ZZ_s[1/2] ) ) with typecode |-
6 1 5 impbid2 Could not format ( A e. No -> ( A e. ZZ_s[1/2] <-> ( -us ` A ) e. ZZ_s[1/2] ) ) : No typesetting found for |- ( A e. No -> ( A e. ZZ_s[1/2] <-> ( -us ` A ) e. ZZ_s[1/2] ) ) with typecode |-