Metamath Proof Explorer


Theorem zs12negscl

Description: The dyadics are closed under negation. (Contributed by Scott Fenton, 9-Nov-2025)

Ref Expression
Assertion zs12negscl Could not format assertion : No typesetting found for |- ( A e. ZZ_s[1/2] -> ( -us ` A ) e. ZZ_s[1/2] ) with typecode |-

Proof

Step Hyp Ref Expression
1 oveq1 Could not format ( z = ( -us ` x ) -> ( z /su ( 2s ^su y ) ) = ( ( -us ` x ) /su ( 2s ^su y ) ) ) : No typesetting found for |- ( z = ( -us ` x ) -> ( z /su ( 2s ^su y ) ) = ( ( -us ` x ) /su ( 2s ^su y ) ) ) with typecode |-
2 1 eqeq2d Could not format ( z = ( -us ` x ) -> ( ( -us ` ( x /su ( 2s ^su y ) ) ) = ( z /su ( 2s ^su y ) ) <-> ( -us ` ( x /su ( 2s ^su y ) ) ) = ( ( -us ` x ) /su ( 2s ^su y ) ) ) ) : No typesetting found for |- ( z = ( -us ` x ) -> ( ( -us ` ( x /su ( 2s ^su y ) ) ) = ( z /su ( 2s ^su y ) ) <-> ( -us ` ( x /su ( 2s ^su y ) ) ) = ( ( -us ` x ) /su ( 2s ^su y ) ) ) ) with typecode |-
3 znegscl x s + s x s
4 3 adantl y 0s x s + s x s
5 zno x s x No
6 5 adantl y 0s x s x No
7 simpl y 0s x s y 0s
8 6 7 pw2divsnegd Could not format ( ( y e. NN0_s /\ x e. ZZ_s ) -> ( -us ` ( x /su ( 2s ^su y ) ) ) = ( ( -us ` x ) /su ( 2s ^su y ) ) ) : No typesetting found for |- ( ( y e. NN0_s /\ x e. ZZ_s ) -> ( -us ` ( x /su ( 2s ^su y ) ) ) = ( ( -us ` x ) /su ( 2s ^su y ) ) ) with typecode |-
9 2 4 8 rspcedvdw Could not format ( ( y e. NN0_s /\ x e. ZZ_s ) -> E. z e. ZZ_s ( -us ` ( x /su ( 2s ^su y ) ) ) = ( z /su ( 2s ^su y ) ) ) : No typesetting found for |- ( ( y e. NN0_s /\ x e. ZZ_s ) -> E. z e. ZZ_s ( -us ` ( x /su ( 2s ^su y ) ) ) = ( z /su ( 2s ^su y ) ) ) with typecode |-
10 fveq2 Could not format ( A = ( x /su ( 2s ^su y ) ) -> ( -us ` A ) = ( -us ` ( x /su ( 2s ^su y ) ) ) ) : No typesetting found for |- ( A = ( x /su ( 2s ^su y ) ) -> ( -us ` A ) = ( -us ` ( x /su ( 2s ^su y ) ) ) ) with typecode |-
11 10 eqeq1d Could not format ( A = ( x /su ( 2s ^su y ) ) -> ( ( -us ` A ) = ( z /su ( 2s ^su y ) ) <-> ( -us ` ( x /su ( 2s ^su y ) ) ) = ( z /su ( 2s ^su y ) ) ) ) : No typesetting found for |- ( A = ( x /su ( 2s ^su y ) ) -> ( ( -us ` A ) = ( z /su ( 2s ^su y ) ) <-> ( -us ` ( x /su ( 2s ^su y ) ) ) = ( z /su ( 2s ^su y ) ) ) ) with typecode |-
12 11 rexbidv Could not format ( A = ( x /su ( 2s ^su y ) ) -> ( E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) <-> E. z e. ZZ_s ( -us ` ( x /su ( 2s ^su y ) ) ) = ( z /su ( 2s ^su y ) ) ) ) : No typesetting found for |- ( A = ( x /su ( 2s ^su y ) ) -> ( E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) <-> E. z e. ZZ_s ( -us ` ( x /su ( 2s ^su y ) ) ) = ( z /su ( 2s ^su y ) ) ) ) with typecode |-
13 9 12 syl5ibrcom Could not format ( ( y e. NN0_s /\ x e. ZZ_s ) -> ( A = ( x /su ( 2s ^su y ) ) -> E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) ) : No typesetting found for |- ( ( y e. NN0_s /\ x e. ZZ_s ) -> ( A = ( x /su ( 2s ^su y ) ) -> E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) ) with typecode |-
14 13 rexlimdva Could not format ( y e. NN0_s -> ( E. x e. ZZ_s A = ( x /su ( 2s ^su y ) ) -> E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) ) : No typesetting found for |- ( y e. NN0_s -> ( E. x e. ZZ_s A = ( x /su ( 2s ^su y ) ) -> E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) ) with typecode |-
15 14 reximia Could not format ( E. y e. NN0_s E. x e. ZZ_s A = ( x /su ( 2s ^su y ) ) -> E. y e. NN0_s E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) : No typesetting found for |- ( E. y e. NN0_s E. x e. ZZ_s A = ( x /su ( 2s ^su y ) ) -> E. y e. NN0_s E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) with typecode |-
16 elzs12 Could not format ( A e. ZZ_s[1/2] <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) : No typesetting found for |- ( A e. ZZ_s[1/2] <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) with typecode |-
17 rexcom Could not format ( E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) <-> E. y e. NN0_s E. x e. ZZ_s A = ( x /su ( 2s ^su y ) ) ) : No typesetting found for |- ( E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) <-> E. y e. NN0_s E. x e. ZZ_s A = ( x /su ( 2s ^su y ) ) ) with typecode |-
18 16 17 bitri Could not format ( A e. ZZ_s[1/2] <-> E. y e. NN0_s E. x e. ZZ_s A = ( x /su ( 2s ^su y ) ) ) : No typesetting found for |- ( A e. ZZ_s[1/2] <-> E. y e. NN0_s E. x e. ZZ_s A = ( x /su ( 2s ^su y ) ) ) with typecode |-
19 elzs12 Could not format ( ( -us ` A ) e. ZZ_s[1/2] <-> E. z e. ZZ_s E. y e. NN0_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) : No typesetting found for |- ( ( -us ` A ) e. ZZ_s[1/2] <-> E. z e. ZZ_s E. y e. NN0_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) with typecode |-
20 rexcom Could not format ( E. z e. ZZ_s E. y e. NN0_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) <-> E. y e. NN0_s E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) : No typesetting found for |- ( E. z e. ZZ_s E. y e. NN0_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) <-> E. y e. NN0_s E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) with typecode |-
21 19 20 bitri Could not format ( ( -us ` A ) e. ZZ_s[1/2] <-> E. y e. NN0_s E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) : No typesetting found for |- ( ( -us ` A ) e. ZZ_s[1/2] <-> E. y e. NN0_s E. z e. ZZ_s ( -us ` A ) = ( z /su ( 2s ^su y ) ) ) with typecode |-
22 15 18 21 3imtr4i Could not format ( A e. ZZ_s[1/2] -> ( -us ` A ) e. ZZ_s[1/2] ) : No typesetting found for |- ( A e. ZZ_s[1/2] -> ( -us ` A ) e. ZZ_s[1/2] ) with typecode |-