Metamath Proof Explorer


Theorem pw2divsnegd

Description: Move negative sign inside of a power of two division. (Contributed by Scott Fenton, 8-Nov-2025)

Ref Expression
Hypotheses pw2divsnegd.1 φ A No
pw2divsnegd.2 φ N 0s
Assertion pw2divsnegd Could not format assertion : No typesetting found for |- ( ph -> ( -us ` ( A /su ( 2s ^su N ) ) ) = ( ( -us ` A ) /su ( 2s ^su N ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 pw2divsnegd.1 φ A No
2 pw2divsnegd.2 φ N 0s
3 1 2 pw2divscld Could not format ( ph -> ( A /su ( 2s ^su N ) ) e. No ) : No typesetting found for |- ( ph -> ( A /su ( 2s ^su N ) ) e. No ) with typecode |-
4 3 negsidd Could not format ( ph -> ( ( A /su ( 2s ^su N ) ) +s ( -us ` ( A /su ( 2s ^su N ) ) ) ) = 0s ) : No typesetting found for |- ( ph -> ( ( A /su ( 2s ^su N ) ) +s ( -us ` ( A /su ( 2s ^su N ) ) ) ) = 0s ) with typecode |-
5 2sno Could not format 2s e. No : No typesetting found for |- 2s e. No with typecode |-
6 expscl Could not format ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No ) : No typesetting found for |- ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No ) with typecode |-
7 5 2 6 sylancr Could not format ( ph -> ( 2s ^su N ) e. No ) : No typesetting found for |- ( ph -> ( 2s ^su N ) e. No ) with typecode |-
8 muls01 Could not format ( ( 2s ^su N ) e. No -> ( ( 2s ^su N ) x.s 0s ) = 0s ) : No typesetting found for |- ( ( 2s ^su N ) e. No -> ( ( 2s ^su N ) x.s 0s ) = 0s ) with typecode |-
9 7 8 syl Could not format ( ph -> ( ( 2s ^su N ) x.s 0s ) = 0s ) : No typesetting found for |- ( ph -> ( ( 2s ^su N ) x.s 0s ) = 0s ) with typecode |-
10 1 negsidd φ A + s + s A = 0 s
11 9 10 eqtr4d Could not format ( ph -> ( ( 2s ^su N ) x.s 0s ) = ( A +s ( -us ` A ) ) ) : No typesetting found for |- ( ph -> ( ( 2s ^su N ) x.s 0s ) = ( A +s ( -us ` A ) ) ) with typecode |-
12 1 negscld φ + s A No
13 1 12 addscld φ A + s + s A No
14 0sno 0 s No
15 14 a1i φ 0 s No
16 13 15 2 pw2divsmuld Could not format ( ph -> ( ( ( A +s ( -us ` A ) ) /su ( 2s ^su N ) ) = 0s <-> ( ( 2s ^su N ) x.s 0s ) = ( A +s ( -us ` A ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( A +s ( -us ` A ) ) /su ( 2s ^su N ) ) = 0s <-> ( ( 2s ^su N ) x.s 0s ) = ( A +s ( -us ` A ) ) ) ) with typecode |-
17 11 16 mpbird Could not format ( ph -> ( ( A +s ( -us ` A ) ) /su ( 2s ^su N ) ) = 0s ) : No typesetting found for |- ( ph -> ( ( A +s ( -us ` A ) ) /su ( 2s ^su N ) ) = 0s ) with typecode |-
18 1 12 2 pw2divsdird Could not format ( ph -> ( ( A +s ( -us ` A ) ) /su ( 2s ^su N ) ) = ( ( A /su ( 2s ^su N ) ) +s ( ( -us ` A ) /su ( 2s ^su N ) ) ) ) : No typesetting found for |- ( ph -> ( ( A +s ( -us ` A ) ) /su ( 2s ^su N ) ) = ( ( A /su ( 2s ^su N ) ) +s ( ( -us ` A ) /su ( 2s ^su N ) ) ) ) with typecode |-
19 4 17 18 3eqtr2rd Could not format ( ph -> ( ( A /su ( 2s ^su N ) ) +s ( ( -us ` A ) /su ( 2s ^su N ) ) ) = ( ( A /su ( 2s ^su N ) ) +s ( -us ` ( A /su ( 2s ^su N ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( A /su ( 2s ^su N ) ) +s ( ( -us ` A ) /su ( 2s ^su N ) ) ) = ( ( A /su ( 2s ^su N ) ) +s ( -us ` ( A /su ( 2s ^su N ) ) ) ) ) with typecode |-
20 12 2 pw2divscld Could not format ( ph -> ( ( -us ` A ) /su ( 2s ^su N ) ) e. No ) : No typesetting found for |- ( ph -> ( ( -us ` A ) /su ( 2s ^su N ) ) e. No ) with typecode |-
21 3 negscld Could not format ( ph -> ( -us ` ( A /su ( 2s ^su N ) ) ) e. No ) : No typesetting found for |- ( ph -> ( -us ` ( A /su ( 2s ^su N ) ) ) e. No ) with typecode |-
22 20 21 3 addscan1d Could not format ( ph -> ( ( ( A /su ( 2s ^su N ) ) +s ( ( -us ` A ) /su ( 2s ^su N ) ) ) = ( ( A /su ( 2s ^su N ) ) +s ( -us ` ( A /su ( 2s ^su N ) ) ) ) <-> ( ( -us ` A ) /su ( 2s ^su N ) ) = ( -us ` ( A /su ( 2s ^su N ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( ( A /su ( 2s ^su N ) ) +s ( ( -us ` A ) /su ( 2s ^su N ) ) ) = ( ( A /su ( 2s ^su N ) ) +s ( -us ` ( A /su ( 2s ^su N ) ) ) ) <-> ( ( -us ` A ) /su ( 2s ^su N ) ) = ( -us ` ( A /su ( 2s ^su N ) ) ) ) ) with typecode |-
23 19 22 mpbid Could not format ( ph -> ( ( -us ` A ) /su ( 2s ^su N ) ) = ( -us ` ( A /su ( 2s ^su N ) ) ) ) : No typesetting found for |- ( ph -> ( ( -us ` A ) /su ( 2s ^su N ) ) = ( -us ` ( A /su ( 2s ^su N ) ) ) ) with typecode |-
24 23 eqcomd Could not format ( ph -> ( -us ` ( A /su ( 2s ^su N ) ) ) = ( ( -us ` A ) /su ( 2s ^su N ) ) ) : No typesetting found for |- ( ph -> ( -us ` ( A /su ( 2s ^su N ) ) ) = ( ( -us ` A ) /su ( 2s ^su N ) ) ) with typecode |-