Metamath Proof Explorer


Theorem pw2divsdird

Description: Distribution of surreal division over addition for powers of two. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses pw2divsdird.1 φ A No
pw2divsdird.2 φ B No
pw2divsdird.3 φ N 0s
Assertion pw2divsdird Could not format assertion : No typesetting found for |- ( ph -> ( ( A +s B ) /su ( 2s ^su N ) ) = ( ( A /su ( 2s ^su N ) ) +s ( B /su ( 2s ^su N ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 pw2divsdird.1 φ A No
2 pw2divsdird.2 φ B No
3 pw2divsdird.3 φ N 0s
4 1sno 1 s No
5 4 a1i φ 1 s No
6 5 3 pw2divscld Could not format ( ph -> ( 1s /su ( 2s ^su N ) ) e. No ) : No typesetting found for |- ( ph -> ( 1s /su ( 2s ^su N ) ) e. No ) with typecode |-
7 1 2 6 addsdird Could not format ( ph -> ( ( A +s B ) x.s ( 1s /su ( 2s ^su N ) ) ) = ( ( A x.s ( 1s /su ( 2s ^su N ) ) ) +s ( B x.s ( 1s /su ( 2s ^su N ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( A +s B ) x.s ( 1s /su ( 2s ^su N ) ) ) = ( ( A x.s ( 1s /su ( 2s ^su N ) ) ) +s ( B x.s ( 1s /su ( 2s ^su N ) ) ) ) ) with typecode |-
8 1 2 addscld φ A + s B No
9 8 3 pw2divsrecd Could not format ( ph -> ( ( A +s B ) /su ( 2s ^su N ) ) = ( ( A +s B ) x.s ( 1s /su ( 2s ^su N ) ) ) ) : No typesetting found for |- ( ph -> ( ( A +s B ) /su ( 2s ^su N ) ) = ( ( A +s B ) x.s ( 1s /su ( 2s ^su N ) ) ) ) with typecode |-
10 1 3 pw2divsrecd Could not format ( ph -> ( A /su ( 2s ^su N ) ) = ( A x.s ( 1s /su ( 2s ^su N ) ) ) ) : No typesetting found for |- ( ph -> ( A /su ( 2s ^su N ) ) = ( A x.s ( 1s /su ( 2s ^su N ) ) ) ) with typecode |-
11 2 3 pw2divsrecd Could not format ( ph -> ( B /su ( 2s ^su N ) ) = ( B x.s ( 1s /su ( 2s ^su N ) ) ) ) : No typesetting found for |- ( ph -> ( B /su ( 2s ^su N ) ) = ( B x.s ( 1s /su ( 2s ^su N ) ) ) ) with typecode |-
12 10 11 oveq12d Could not format ( ph -> ( ( A /su ( 2s ^su N ) ) +s ( B /su ( 2s ^su N ) ) ) = ( ( A x.s ( 1s /su ( 2s ^su N ) ) ) +s ( B x.s ( 1s /su ( 2s ^su N ) ) ) ) ) : No typesetting found for |- ( ph -> ( ( A /su ( 2s ^su N ) ) +s ( B /su ( 2s ^su N ) ) ) = ( ( A x.s ( 1s /su ( 2s ^su N ) ) ) +s ( B x.s ( 1s /su ( 2s ^su N ) ) ) ) ) with typecode |-
13 7 9 12 3eqtr4d Could not format ( ph -> ( ( A +s B ) /su ( 2s ^su N ) ) = ( ( A /su ( 2s ^su N ) ) +s ( B /su ( 2s ^su N ) ) ) ) : No typesetting found for |- ( ph -> ( ( A +s B ) /su ( 2s ^su N ) ) = ( ( A /su ( 2s ^su N ) ) +s ( B /su ( 2s ^su N ) ) ) ) with typecode |-