Metamath Proof Explorer


Theorem pw2divsdird

Description: Distribution of surreal division over addition for powers of two. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses pw2divsdird.1
|- ( ph -> A e. No )
pw2divsdird.2
|- ( ph -> B e. No )
pw2divsdird.3
|- ( ph -> N e. NN0_s )
Assertion pw2divsdird
|- ( ph -> ( ( A +s B ) /su ( 2s ^su N ) ) = ( ( A /su ( 2s ^su N ) ) +s ( B /su ( 2s ^su N ) ) ) )

Proof

Step Hyp Ref Expression
1 pw2divsdird.1
 |-  ( ph -> A e. No )
2 pw2divsdird.2
 |-  ( ph -> B e. No )
3 pw2divsdird.3
 |-  ( ph -> N e. NN0_s )
4 1sno
 |-  1s e. No
5 4 a1i
 |-  ( ph -> 1s e. No )
6 5 3 pw2divscld
 |-  ( ph -> ( 1s /su ( 2s ^su N ) ) e. No )
7 1 2 6 addsdird
 |-  ( ph -> ( ( A +s B ) x.s ( 1s /su ( 2s ^su N ) ) ) = ( ( A x.s ( 1s /su ( 2s ^su N ) ) ) +s ( B x.s ( 1s /su ( 2s ^su N ) ) ) ) )
8 1 2 addscld
 |-  ( ph -> ( A +s B ) e. No )
9 8 3 pw2divsrecd
 |-  ( ph -> ( ( A +s B ) /su ( 2s ^su N ) ) = ( ( A +s B ) x.s ( 1s /su ( 2s ^su N ) ) ) )
10 1 3 pw2divsrecd
 |-  ( ph -> ( A /su ( 2s ^su N ) ) = ( A x.s ( 1s /su ( 2s ^su N ) ) ) )
11 2 3 pw2divsrecd
 |-  ( ph -> ( B /su ( 2s ^su N ) ) = ( B x.s ( 1s /su ( 2s ^su N ) ) ) )
12 10 11 oveq12d
 |-  ( ph -> ( ( A /su ( 2s ^su N ) ) +s ( B /su ( 2s ^su N ) ) ) = ( ( A x.s ( 1s /su ( 2s ^su N ) ) ) +s ( B x.s ( 1s /su ( 2s ^su N ) ) ) ) )
13 7 9 12 3eqtr4d
 |-  ( ph -> ( ( A +s B ) /su ( 2s ^su N ) ) = ( ( A /su ( 2s ^su N ) ) +s ( B /su ( 2s ^su N ) ) ) )