| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divsdird.1 |
|- ( ph -> A e. No ) |
| 2 |
|
pw2divsdird.2 |
|- ( ph -> B e. No ) |
| 3 |
|
pw2divsdird.3 |
|- ( ph -> N e. NN0_s ) |
| 4 |
|
1sno |
|- 1s e. No |
| 5 |
4
|
a1i |
|- ( ph -> 1s e. No ) |
| 6 |
5 3
|
pw2divscld |
|- ( ph -> ( 1s /su ( 2s ^su N ) ) e. No ) |
| 7 |
1 2 6
|
addsdird |
|- ( ph -> ( ( A +s B ) x.s ( 1s /su ( 2s ^su N ) ) ) = ( ( A x.s ( 1s /su ( 2s ^su N ) ) ) +s ( B x.s ( 1s /su ( 2s ^su N ) ) ) ) ) |
| 8 |
1 2
|
addscld |
|- ( ph -> ( A +s B ) e. No ) |
| 9 |
8 3
|
pw2divsrecd |
|- ( ph -> ( ( A +s B ) /su ( 2s ^su N ) ) = ( ( A +s B ) x.s ( 1s /su ( 2s ^su N ) ) ) ) |
| 10 |
1 3
|
pw2divsrecd |
|- ( ph -> ( A /su ( 2s ^su N ) ) = ( A x.s ( 1s /su ( 2s ^su N ) ) ) ) |
| 11 |
2 3
|
pw2divsrecd |
|- ( ph -> ( B /su ( 2s ^su N ) ) = ( B x.s ( 1s /su ( 2s ^su N ) ) ) ) |
| 12 |
10 11
|
oveq12d |
|- ( ph -> ( ( A /su ( 2s ^su N ) ) +s ( B /su ( 2s ^su N ) ) ) = ( ( A x.s ( 1s /su ( 2s ^su N ) ) ) +s ( B x.s ( 1s /su ( 2s ^su N ) ) ) ) ) |
| 13 |
7 9 12
|
3eqtr4d |
|- ( ph -> ( ( A +s B ) /su ( 2s ^su N ) ) = ( ( A /su ( 2s ^su N ) ) +s ( B /su ( 2s ^su N ) ) ) ) |