| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divsdird.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
pw2divsdird.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
pw2divsdird.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
| 4 |
|
1sno |
⊢ 1s ∈ No |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → 1s ∈ No ) |
| 6 |
5 3
|
pw2divscld |
⊢ ( 𝜑 → ( 1s /su ( 2s ↑s 𝑁 ) ) ∈ No ) |
| 7 |
1 2 6
|
addsdird |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) = ( ( 𝐴 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) +s ( 𝐵 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) ) |
| 8 |
1 2
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
| 9 |
8 3
|
pw2divsrecd |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s 𝑁 ) ) = ( ( 𝐴 +s 𝐵 ) ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) |
| 10 |
1 3
|
pw2divsrecd |
⊢ ( 𝜑 → ( 𝐴 /su ( 2s ↑s 𝑁 ) ) = ( 𝐴 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) |
| 11 |
2 3
|
pw2divsrecd |
⊢ ( 𝜑 → ( 𝐵 /su ( 2s ↑s 𝑁 ) ) = ( 𝐵 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) |
| 12 |
10 11
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) +s ( 𝐵 /su ( 2s ↑s 𝑁 ) ) ) = ( ( 𝐴 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) +s ( 𝐵 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) ) |
| 13 |
7 9 12
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s 𝑁 ) ) = ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) +s ( 𝐵 /su ( 2s ↑s 𝑁 ) ) ) ) |