Metamath Proof Explorer


Theorem pw2divsdird

Description: Distribution of surreal division over addition for powers of two. (Contributed by Scott Fenton, 7-Nov-2025)

Ref Expression
Hypotheses pw2divsdird.1 ( 𝜑𝐴 No )
pw2divsdird.2 ( 𝜑𝐵 No )
pw2divsdird.3 ( 𝜑𝑁 ∈ ℕ0s )
Assertion pw2divsdird ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su ( 2ss 𝑁 ) ) = ( ( 𝐴 /su ( 2ss 𝑁 ) ) +s ( 𝐵 /su ( 2ss 𝑁 ) ) ) )

Proof

Step Hyp Ref Expression
1 pw2divsdird.1 ( 𝜑𝐴 No )
2 pw2divsdird.2 ( 𝜑𝐵 No )
3 pw2divsdird.3 ( 𝜑𝑁 ∈ ℕ0s )
4 1sno 1s No
5 4 a1i ( 𝜑 → 1s No )
6 5 3 pw2divscld ( 𝜑 → ( 1s /su ( 2ss 𝑁 ) ) ∈ No )
7 1 2 6 addsdird ( 𝜑 → ( ( 𝐴 +s 𝐵 ) ·s ( 1s /su ( 2ss 𝑁 ) ) ) = ( ( 𝐴 ·s ( 1s /su ( 2ss 𝑁 ) ) ) +s ( 𝐵 ·s ( 1s /su ( 2ss 𝑁 ) ) ) ) )
8 1 2 addscld ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No )
9 8 3 pw2divsrecd ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su ( 2ss 𝑁 ) ) = ( ( 𝐴 +s 𝐵 ) ·s ( 1s /su ( 2ss 𝑁 ) ) ) )
10 1 3 pw2divsrecd ( 𝜑 → ( 𝐴 /su ( 2ss 𝑁 ) ) = ( 𝐴 ·s ( 1s /su ( 2ss 𝑁 ) ) ) )
11 2 3 pw2divsrecd ( 𝜑 → ( 𝐵 /su ( 2ss 𝑁 ) ) = ( 𝐵 ·s ( 1s /su ( 2ss 𝑁 ) ) ) )
12 10 11 oveq12d ( 𝜑 → ( ( 𝐴 /su ( 2ss 𝑁 ) ) +s ( 𝐵 /su ( 2ss 𝑁 ) ) ) = ( ( 𝐴 ·s ( 1s /su ( 2ss 𝑁 ) ) ) +s ( 𝐵 ·s ( 1s /su ( 2ss 𝑁 ) ) ) ) )
13 7 9 12 3eqtr4d ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su ( 2ss 𝑁 ) ) = ( ( 𝐴 /su ( 2ss 𝑁 ) ) +s ( 𝐵 /su ( 2ss 𝑁 ) ) ) )