| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divsrecd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
pw2divsrecd.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
| 3 |
1
|
mulsridd |
⊢ ( 𝜑 → ( 𝐴 ·s 1s ) = 𝐴 ) |
| 4 |
|
2sno |
⊢ 2s ∈ No |
| 5 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑁 ∈ ℕ0s ) → ( 2s ↑s 𝑁 ) ∈ No ) |
| 6 |
4 2 5
|
sylancr |
⊢ ( 𝜑 → ( 2s ↑s 𝑁 ) ∈ No ) |
| 7 |
|
1sno |
⊢ 1s ∈ No |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 1s ∈ No ) |
| 9 |
8 2
|
pw2divscld |
⊢ ( 𝜑 → ( 1s /su ( 2s ↑s 𝑁 ) ) ∈ No ) |
| 10 |
6 1 9
|
muls12d |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s ( 𝐴 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) = ( 𝐴 ·s ( ( 2s ↑s 𝑁 ) ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) ) |
| 11 |
8 2
|
pw2divscan2d |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) = 1s ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 ·s ( ( 2s ↑s 𝑁 ) ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) = ( 𝐴 ·s 1s ) ) |
| 13 |
10 12
|
eqtrd |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s ( 𝐴 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) = ( 𝐴 ·s 1s ) ) |
| 14 |
1 2
|
pw2divscan2d |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) = 𝐴 ) |
| 15 |
3 13 14
|
3eqtr4rd |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) = ( ( 2s ↑s 𝑁 ) ·s ( 𝐴 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) ) |
| 16 |
1 2
|
pw2divscld |
⊢ ( 𝜑 → ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ∈ No ) |
| 17 |
1 9
|
mulscld |
⊢ ( 𝜑 → ( 𝐴 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ∈ No ) |
| 18 |
|
2ne0s |
⊢ 2s ≠ 0s |
| 19 |
|
expsne0 |
⊢ ( ( 2s ∈ No ∧ 2s ≠ 0s ∧ 𝑁 ∈ ℕ0s ) → ( 2s ↑s 𝑁 ) ≠ 0s ) |
| 20 |
4 18 2 19
|
mp3an12i |
⊢ ( 𝜑 → ( 2s ↑s 𝑁 ) ≠ 0s ) |
| 21 |
16 17 6 20
|
mulscan1d |
⊢ ( 𝜑 → ( ( ( 2s ↑s 𝑁 ) ·s ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) = ( ( 2s ↑s 𝑁 ) ·s ( 𝐴 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) ↔ ( 𝐴 /su ( 2s ↑s 𝑁 ) ) = ( 𝐴 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) ) |
| 22 |
15 21
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 /su ( 2s ↑s 𝑁 ) ) = ( 𝐴 ·s ( 1s /su ( 2s ↑s 𝑁 ) ) ) ) |