| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divsrecd.1 |
|- ( ph -> A e. No ) |
| 2 |
|
pw2divsrecd.2 |
|- ( ph -> N e. NN0_s ) |
| 3 |
1
|
mulsridd |
|- ( ph -> ( A x.s 1s ) = A ) |
| 4 |
|
2sno |
|- 2s e. No |
| 5 |
|
expscl |
|- ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No ) |
| 6 |
4 2 5
|
sylancr |
|- ( ph -> ( 2s ^su N ) e. No ) |
| 7 |
|
1sno |
|- 1s e. No |
| 8 |
7
|
a1i |
|- ( ph -> 1s e. No ) |
| 9 |
8 2
|
pw2divscld |
|- ( ph -> ( 1s /su ( 2s ^su N ) ) e. No ) |
| 10 |
6 1 9
|
muls12d |
|- ( ph -> ( ( 2s ^su N ) x.s ( A x.s ( 1s /su ( 2s ^su N ) ) ) ) = ( A x.s ( ( 2s ^su N ) x.s ( 1s /su ( 2s ^su N ) ) ) ) ) |
| 11 |
8 2
|
pw2divscan2d |
|- ( ph -> ( ( 2s ^su N ) x.s ( 1s /su ( 2s ^su N ) ) ) = 1s ) |
| 12 |
11
|
oveq2d |
|- ( ph -> ( A x.s ( ( 2s ^su N ) x.s ( 1s /su ( 2s ^su N ) ) ) ) = ( A x.s 1s ) ) |
| 13 |
10 12
|
eqtrd |
|- ( ph -> ( ( 2s ^su N ) x.s ( A x.s ( 1s /su ( 2s ^su N ) ) ) ) = ( A x.s 1s ) ) |
| 14 |
1 2
|
pw2divscan2d |
|- ( ph -> ( ( 2s ^su N ) x.s ( A /su ( 2s ^su N ) ) ) = A ) |
| 15 |
3 13 14
|
3eqtr4rd |
|- ( ph -> ( ( 2s ^su N ) x.s ( A /su ( 2s ^su N ) ) ) = ( ( 2s ^su N ) x.s ( A x.s ( 1s /su ( 2s ^su N ) ) ) ) ) |
| 16 |
1 2
|
pw2divscld |
|- ( ph -> ( A /su ( 2s ^su N ) ) e. No ) |
| 17 |
1 9
|
mulscld |
|- ( ph -> ( A x.s ( 1s /su ( 2s ^su N ) ) ) e. No ) |
| 18 |
|
2ne0s |
|- 2s =/= 0s |
| 19 |
|
expsne0 |
|- ( ( 2s e. No /\ 2s =/= 0s /\ N e. NN0_s ) -> ( 2s ^su N ) =/= 0s ) |
| 20 |
4 18 2 19
|
mp3an12i |
|- ( ph -> ( 2s ^su N ) =/= 0s ) |
| 21 |
16 17 6 20
|
mulscan1d |
|- ( ph -> ( ( ( 2s ^su N ) x.s ( A /su ( 2s ^su N ) ) ) = ( ( 2s ^su N ) x.s ( A x.s ( 1s /su ( 2s ^su N ) ) ) ) <-> ( A /su ( 2s ^su N ) ) = ( A x.s ( 1s /su ( 2s ^su N ) ) ) ) ) |
| 22 |
15 21
|
mpbid |
|- ( ph -> ( A /su ( 2s ^su N ) ) = ( A x.s ( 1s /su ( 2s ^su N ) ) ) ) |