| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divsnegd.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
pw2divsnegd.2 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
| 3 |
1 2
|
pw2divscld |
⊢ ( 𝜑 → ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ∈ No ) |
| 4 |
3
|
negsidd |
⊢ ( 𝜑 → ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) +s ( -us ‘ ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) ) = 0s ) |
| 5 |
|
2sno |
⊢ 2s ∈ No |
| 6 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑁 ∈ ℕ0s ) → ( 2s ↑s 𝑁 ) ∈ No ) |
| 7 |
5 2 6
|
sylancr |
⊢ ( 𝜑 → ( 2s ↑s 𝑁 ) ∈ No ) |
| 8 |
|
muls01 |
⊢ ( ( 2s ↑s 𝑁 ) ∈ No → ( ( 2s ↑s 𝑁 ) ·s 0s ) = 0s ) |
| 9 |
7 8
|
syl |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s 0s ) = 0s ) |
| 10 |
1
|
negsidd |
⊢ ( 𝜑 → ( 𝐴 +s ( -us ‘ 𝐴 ) ) = 0s ) |
| 11 |
9 10
|
eqtr4d |
⊢ ( 𝜑 → ( ( 2s ↑s 𝑁 ) ·s 0s ) = ( 𝐴 +s ( -us ‘ 𝐴 ) ) ) |
| 12 |
1
|
negscld |
⊢ ( 𝜑 → ( -us ‘ 𝐴 ) ∈ No ) |
| 13 |
1 12
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s ( -us ‘ 𝐴 ) ) ∈ No ) |
| 14 |
|
0sno |
⊢ 0s ∈ No |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → 0s ∈ No ) |
| 16 |
13 15 2
|
pw2divsmuld |
⊢ ( 𝜑 → ( ( ( 𝐴 +s ( -us ‘ 𝐴 ) ) /su ( 2s ↑s 𝑁 ) ) = 0s ↔ ( ( 2s ↑s 𝑁 ) ·s 0s ) = ( 𝐴 +s ( -us ‘ 𝐴 ) ) ) ) |
| 17 |
11 16
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 +s ( -us ‘ 𝐴 ) ) /su ( 2s ↑s 𝑁 ) ) = 0s ) |
| 18 |
1 12 2
|
pw2divsdird |
⊢ ( 𝜑 → ( ( 𝐴 +s ( -us ‘ 𝐴 ) ) /su ( 2s ↑s 𝑁 ) ) = ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) +s ( ( -us ‘ 𝐴 ) /su ( 2s ↑s 𝑁 ) ) ) ) |
| 19 |
4 17 18
|
3eqtr2rd |
⊢ ( 𝜑 → ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) +s ( ( -us ‘ 𝐴 ) /su ( 2s ↑s 𝑁 ) ) ) = ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) +s ( -us ‘ ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) ) ) |
| 20 |
12 2
|
pw2divscld |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) /su ( 2s ↑s 𝑁 ) ) ∈ No ) |
| 21 |
3
|
negscld |
⊢ ( 𝜑 → ( -us ‘ ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) ∈ No ) |
| 22 |
20 21 3
|
addscan1d |
⊢ ( 𝜑 → ( ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) +s ( ( -us ‘ 𝐴 ) /su ( 2s ↑s 𝑁 ) ) ) = ( ( 𝐴 /su ( 2s ↑s 𝑁 ) ) +s ( -us ‘ ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) ) ↔ ( ( -us ‘ 𝐴 ) /su ( 2s ↑s 𝑁 ) ) = ( -us ‘ ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) ) ) |
| 23 |
19 22
|
mpbid |
⊢ ( 𝜑 → ( ( -us ‘ 𝐴 ) /su ( 2s ↑s 𝑁 ) ) = ( -us ‘ ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) ) |
| 24 |
23
|
eqcomd |
⊢ ( 𝜑 → ( -us ‘ ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) = ( ( -us ‘ 𝐴 ) /su ( 2s ↑s 𝑁 ) ) ) |