| Step | Hyp | Ref | Expression | 
						
							| 1 |  | halfcut.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | halfcut.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | halfcut.3 | ⊢ ( 𝜑  →  𝐴  <s  𝐵 ) | 
						
							| 4 |  | halfcut.4 | ⊢ ( 𝜑  →  ( { ( 2s  ·s  𝐴 ) }  |s  { ( 2s  ·s  𝐵 ) } )  =  ( 𝐴  +s  𝐵 ) ) | 
						
							| 5 |  | halfcut.5 | ⊢ 𝐶  =  ( { 𝐴 }  |s  { 𝐵 } ) | 
						
							| 6 | 1 2 3 | ssltsn | ⊢ ( 𝜑  →  { 𝐴 }  <<s  { 𝐵 } ) | 
						
							| 7 | 6 | scutcld | ⊢ ( 𝜑  →  ( { 𝐴 }  |s  { 𝐵 } )  ∈   No  ) | 
						
							| 8 | 5 7 | eqeltrid | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 9 |  | no2times | ⊢ ( 𝐶  ∈   No   →  ( 2s  ·s  𝐶 )  =  ( 𝐶  +s  𝐶 ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝜑  →  ( 2s  ·s  𝐶 )  =  ( 𝐶  +s  𝐶 ) ) | 
						
							| 11 | 5 | a1i | ⊢ ( 𝜑  →  𝐶  =  ( { 𝐴 }  |s  { 𝐵 } ) ) | 
						
							| 12 | 6 6 11 11 | addsunif | ⊢ ( 𝜑  →  ( 𝐶  +s  𝐶 )  =  ( ( { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝐶  +s  𝑦 ) } )  |s  ( { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝐶  +s  𝑦 ) } ) ) ) | 
						
							| 13 |  | oveq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  +s  𝐶 )  =  ( 𝐴  +s  𝐶 ) ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  =  ( 𝑦  +s  𝐶 )  ↔  𝑥  =  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 15 | 14 | rexsng | ⊢ ( 𝐴  ∈   No   →  ( ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝑦  +s  𝐶 )  ↔  𝑥  =  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 16 | 1 15 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝑦  +s  𝐶 )  ↔  𝑥  =  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 17 | 16 | abbidv | ⊢ ( 𝜑  →  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  =  { 𝑥  ∣  𝑥  =  ( 𝐴  +s  𝐶 ) } ) | 
						
							| 18 |  | df-sn | ⊢ { ( 𝐴  +s  𝐶 ) }  =  { 𝑥  ∣  𝑥  =  ( 𝐴  +s  𝐶 ) } | 
						
							| 19 | 17 18 | eqtr4di | ⊢ ( 𝜑  →  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  =  { ( 𝐴  +s  𝐶 ) } ) | 
						
							| 20 |  | oveq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐶  +s  𝑦 )  =  ( 𝐶  +s  𝐴 ) ) | 
						
							| 21 | 20 | eqeq2d | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  =  ( 𝐶  +s  𝑦 )  ↔  𝑥  =  ( 𝐶  +s  𝐴 ) ) ) | 
						
							| 22 | 21 | rexsng | ⊢ ( 𝐴  ∈   No   →  ( ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝐶  +s  𝑦 )  ↔  𝑥  =  ( 𝐶  +s  𝐴 ) ) ) | 
						
							| 23 | 1 22 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝐶  +s  𝑦 )  ↔  𝑥  =  ( 𝐶  +s  𝐴 ) ) ) | 
						
							| 24 | 8 1 | addscomd | ⊢ ( 𝜑  →  ( 𝐶  +s  𝐴 )  =  ( 𝐴  +s  𝐶 ) ) | 
						
							| 25 | 24 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑥  =  ( 𝐶  +s  𝐴 )  ↔  𝑥  =  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 26 | 23 25 | bitrd | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝐶  +s  𝑦 )  ↔  𝑥  =  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 27 | 26 | abbidv | ⊢ ( 𝜑  →  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝐶  +s  𝑦 ) }  =  { 𝑥  ∣  𝑥  =  ( 𝐴  +s  𝐶 ) } ) | 
						
							| 28 | 27 18 | eqtr4di | ⊢ ( 𝜑  →  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝐶  +s  𝑦 ) }  =  { ( 𝐴  +s  𝐶 ) } ) | 
						
							| 29 | 19 28 | uneq12d | ⊢ ( 𝜑  →  ( { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝐶  +s  𝑦 ) } )  =  ( { ( 𝐴  +s  𝐶 ) }  ∪  { ( 𝐴  +s  𝐶 ) } ) ) | 
						
							| 30 |  | unidm | ⊢ ( { ( 𝐴  +s  𝐶 ) }  ∪  { ( 𝐴  +s  𝐶 ) } )  =  { ( 𝐴  +s  𝐶 ) } | 
						
							| 31 | 29 30 | eqtrdi | ⊢ ( 𝜑  →  ( { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝐶  +s  𝑦 ) } )  =  { ( 𝐴  +s  𝐶 ) } ) | 
						
							| 32 |  | oveq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  +s  𝐶 )  =  ( 𝐵  +s  𝐶 ) ) | 
						
							| 33 | 32 | eqeq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝑥  =  ( 𝑦  +s  𝐶 )  ↔  𝑥  =  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 34 | 33 | rexsng | ⊢ ( 𝐵  ∈   No   →  ( ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝑦  +s  𝐶 )  ↔  𝑥  =  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 35 | 2 34 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝑦  +s  𝐶 )  ↔  𝑥  =  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 36 | 35 | abbidv | ⊢ ( 𝜑  →  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  =  { 𝑥  ∣  𝑥  =  ( 𝐵  +s  𝐶 ) } ) | 
						
							| 37 |  | df-sn | ⊢ { ( 𝐵  +s  𝐶 ) }  =  { 𝑥  ∣  𝑥  =  ( 𝐵  +s  𝐶 ) } | 
						
							| 38 | 36 37 | eqtr4di | ⊢ ( 𝜑  →  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  =  { ( 𝐵  +s  𝐶 ) } ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐶  +s  𝑦 )  =  ( 𝐶  +s  𝐵 ) ) | 
						
							| 40 | 39 | eqeq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝑥  =  ( 𝐶  +s  𝑦 )  ↔  𝑥  =  ( 𝐶  +s  𝐵 ) ) ) | 
						
							| 41 | 40 | rexsng | ⊢ ( 𝐵  ∈   No   →  ( ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝐶  +s  𝑦 )  ↔  𝑥  =  ( 𝐶  +s  𝐵 ) ) ) | 
						
							| 42 | 2 41 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝐶  +s  𝑦 )  ↔  𝑥  =  ( 𝐶  +s  𝐵 ) ) ) | 
						
							| 43 | 8 2 | addscomd | ⊢ ( 𝜑  →  ( 𝐶  +s  𝐵 )  =  ( 𝐵  +s  𝐶 ) ) | 
						
							| 44 | 43 | eqeq2d | ⊢ ( 𝜑  →  ( 𝑥  =  ( 𝐶  +s  𝐵 )  ↔  𝑥  =  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 45 | 42 44 | bitrd | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝐶  +s  𝑦 )  ↔  𝑥  =  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 46 | 45 | abbidv | ⊢ ( 𝜑  →  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝐶  +s  𝑦 ) }  =  { 𝑥  ∣  𝑥  =  ( 𝐵  +s  𝐶 ) } ) | 
						
							| 47 | 46 37 | eqtr4di | ⊢ ( 𝜑  →  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝐶  +s  𝑦 ) }  =  { ( 𝐵  +s  𝐶 ) } ) | 
						
							| 48 | 38 47 | uneq12d | ⊢ ( 𝜑  →  ( { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝐶  +s  𝑦 ) } )  =  ( { ( 𝐵  +s  𝐶 ) }  ∪  { ( 𝐵  +s  𝐶 ) } ) ) | 
						
							| 49 |  | unidm | ⊢ ( { ( 𝐵  +s  𝐶 ) }  ∪  { ( 𝐵  +s  𝐶 ) } )  =  { ( 𝐵  +s  𝐶 ) } | 
						
							| 50 | 48 49 | eqtrdi | ⊢ ( 𝜑  →  ( { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝐶  +s  𝑦 ) } )  =  { ( 𝐵  +s  𝐶 ) } ) | 
						
							| 51 | 31 50 | oveq12d | ⊢ ( 𝜑  →  ( ( { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝐶  +s  𝑦 ) } )  |s  ( { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝐶  +s  𝑦 ) } ) )  =  ( { ( 𝐴  +s  𝐶 ) }  |s  { ( 𝐵  +s  𝐶 ) } ) ) | 
						
							| 52 |  | 2sno | ⊢ 2s  ∈   No | 
						
							| 53 | 52 | a1i | ⊢ ( 𝜑  →  2s  ∈   No  ) | 
						
							| 54 | 53 1 | mulscld | ⊢ ( 𝜑  →  ( 2s  ·s  𝐴 )  ∈   No  ) | 
						
							| 55 | 53 2 | mulscld | ⊢ ( 𝜑  →  ( 2s  ·s  𝐵 )  ∈   No  ) | 
						
							| 56 |  | 2nns | ⊢ 2s  ∈  ℕs | 
						
							| 57 |  | nnsgt0 | ⊢ ( 2s  ∈  ℕs  →   0s   <s  2s ) | 
						
							| 58 | 56 57 | mp1i | ⊢ ( 𝜑  →   0s   <s  2s ) | 
						
							| 59 | 1 2 53 58 | sltmul2d | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐵  ↔  ( 2s  ·s  𝐴 )  <s  ( 2s  ·s  𝐵 ) ) ) | 
						
							| 60 | 3 59 | mpbid | ⊢ ( 𝜑  →  ( 2s  ·s  𝐴 )  <s  ( 2s  ·s  𝐵 ) ) | 
						
							| 61 | 54 55 60 | ssltsn | ⊢ ( 𝜑  →  { ( 2s  ·s  𝐴 ) }  <<s  { ( 2s  ·s  𝐵 ) } ) | 
						
							| 62 | 1 8 | addscld | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐶 )  ∈   No  ) | 
						
							| 63 |  | no2times | ⊢ ( 𝐴  ∈   No   →  ( 2s  ·s  𝐴 )  =  ( 𝐴  +s  𝐴 ) ) | 
						
							| 64 | 1 63 | syl | ⊢ ( 𝜑  →  ( 2s  ·s  𝐴 )  =  ( 𝐴  +s  𝐴 ) ) | 
						
							| 65 |  | slerflex | ⊢ ( 𝐴  ∈   No   →  𝐴  ≤s  𝐴 ) | 
						
							| 66 | 1 65 | syl | ⊢ ( 𝜑  →  𝐴  ≤s  𝐴 ) | 
						
							| 67 |  | breq2 | ⊢ ( 𝑥  =  𝐴  →  ( 𝐴  ≤s  𝑥  ↔  𝐴  ≤s  𝐴 ) ) | 
						
							| 68 | 67 | rexsng | ⊢ ( 𝐴  ∈   No   →  ( ∃ 𝑥  ∈  { 𝐴 } 𝐴  ≤s  𝑥  ↔  𝐴  ≤s  𝐴 ) ) | 
						
							| 69 | 1 68 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  { 𝐴 } 𝐴  ≤s  𝑥  ↔  𝐴  ≤s  𝐴 ) ) | 
						
							| 70 | 66 69 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  { 𝐴 } 𝐴  ≤s  𝑥 ) | 
						
							| 71 | 70 | orcd | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  { 𝐴 } 𝐴  ≤s  𝑥  ∨  ∃ 𝑦  ∈  (  R  ‘ 𝐴 ) 𝑦  ≤s  𝐶 ) ) | 
						
							| 72 |  | lltropt | ⊢ (  L  ‘ 𝐴 )  <<s  (  R  ‘ 𝐴 ) | 
						
							| 73 | 72 | a1i | ⊢ ( 𝜑  →  (  L  ‘ 𝐴 )  <<s  (  R  ‘ 𝐴 ) ) | 
						
							| 74 |  | lrcut | ⊢ ( 𝐴  ∈   No   →  ( (  L  ‘ 𝐴 )  |s  (  R  ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 75 | 1 74 | syl | ⊢ ( 𝜑  →  ( (  L  ‘ 𝐴 )  |s  (  R  ‘ 𝐴 ) )  =  𝐴 ) | 
						
							| 76 | 75 | eqcomd | ⊢ ( 𝜑  →  𝐴  =  ( (  L  ‘ 𝐴 )  |s  (  R  ‘ 𝐴 ) ) ) | 
						
							| 77 |  | sltrec | ⊢ ( ( ( (  L  ‘ 𝐴 )  <<s  (  R  ‘ 𝐴 )  ∧  { 𝐴 }  <<s  { 𝐵 } )  ∧  ( 𝐴  =  ( (  L  ‘ 𝐴 )  |s  (  R  ‘ 𝐴 ) )  ∧  𝐶  =  ( { 𝐴 }  |s  { 𝐵 } ) ) )  →  ( 𝐴  <s  𝐶  ↔  ( ∃ 𝑥  ∈  { 𝐴 } 𝐴  ≤s  𝑥  ∨  ∃ 𝑦  ∈  (  R  ‘ 𝐴 ) 𝑦  ≤s  𝐶 ) ) ) | 
						
							| 78 | 73 6 76 11 77 | syl22anc | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐶  ↔  ( ∃ 𝑥  ∈  { 𝐴 } 𝐴  ≤s  𝑥  ∨  ∃ 𝑦  ∈  (  R  ‘ 𝐴 ) 𝑦  ≤s  𝐶 ) ) ) | 
						
							| 79 | 71 78 | mpbird | ⊢ ( 𝜑  →  𝐴  <s  𝐶 ) | 
						
							| 80 | 1 8 1 | sltadd2d | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐶  ↔  ( 𝐴  +s  𝐴 )  <s  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 81 | 79 80 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐴 )  <s  ( 𝐴  +s  𝐶 ) ) | 
						
							| 82 | 64 81 | eqbrtrd | ⊢ ( 𝜑  →  ( 2s  ·s  𝐴 )  <s  ( 𝐴  +s  𝐶 ) ) | 
						
							| 83 | 54 62 82 | sltled | ⊢ ( 𝜑  →  ( 2s  ·s  𝐴 )  ≤s  ( 𝐴  +s  𝐶 ) ) | 
						
							| 84 |  | ovex | ⊢ ( 𝐴  +s  𝐶 )  ∈  V | 
						
							| 85 |  | breq2 | ⊢ ( 𝑦  =  ( 𝐴  +s  𝐶 )  →  ( 𝑥  ≤s  𝑦  ↔  𝑥  ≤s  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 86 | 84 85 | rexsn | ⊢ ( ∃ 𝑦  ∈  { ( 𝐴  +s  𝐶 ) } 𝑥  ≤s  𝑦  ↔  𝑥  ≤s  ( 𝐴  +s  𝐶 ) ) | 
						
							| 87 | 86 | ralbii | ⊢ ( ∀ 𝑥  ∈  { ( 2s  ·s  𝐴 ) } ∃ 𝑦  ∈  { ( 𝐴  +s  𝐶 ) } 𝑥  ≤s  𝑦  ↔  ∀ 𝑥  ∈  { ( 2s  ·s  𝐴 ) } 𝑥  ≤s  ( 𝐴  +s  𝐶 ) ) | 
						
							| 88 |  | ovex | ⊢ ( 2s  ·s  𝐴 )  ∈  V | 
						
							| 89 |  | breq1 | ⊢ ( 𝑥  =  ( 2s  ·s  𝐴 )  →  ( 𝑥  ≤s  ( 𝐴  +s  𝐶 )  ↔  ( 2s  ·s  𝐴 )  ≤s  ( 𝐴  +s  𝐶 ) ) ) | 
						
							| 90 | 88 89 | ralsn | ⊢ ( ∀ 𝑥  ∈  { ( 2s  ·s  𝐴 ) } 𝑥  ≤s  ( 𝐴  +s  𝐶 )  ↔  ( 2s  ·s  𝐴 )  ≤s  ( 𝐴  +s  𝐶 ) ) | 
						
							| 91 | 87 90 | bitri | ⊢ ( ∀ 𝑥  ∈  { ( 2s  ·s  𝐴 ) } ∃ 𝑦  ∈  { ( 𝐴  +s  𝐶 ) } 𝑥  ≤s  𝑦  ↔  ( 2s  ·s  𝐴 )  ≤s  ( 𝐴  +s  𝐶 ) ) | 
						
							| 92 | 83 91 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  { ( 2s  ·s  𝐴 ) } ∃ 𝑦  ∈  { ( 𝐴  +s  𝐶 ) } 𝑥  ≤s  𝑦 ) | 
						
							| 93 | 2 8 | addscld | ⊢ ( 𝜑  →  ( 𝐵  +s  𝐶 )  ∈   No  ) | 
						
							| 94 |  | slerflex | ⊢ ( 𝐵  ∈   No   →  𝐵  ≤s  𝐵 ) | 
						
							| 95 | 2 94 | syl | ⊢ ( 𝜑  →  𝐵  ≤s  𝐵 ) | 
						
							| 96 |  | breq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ≤s  𝐵  ↔  𝐵  ≤s  𝐵 ) ) | 
						
							| 97 | 96 | rexsng | ⊢ ( 𝐵  ∈   No   →  ( ∃ 𝑦  ∈  { 𝐵 } 𝑦  ≤s  𝐵  ↔  𝐵  ≤s  𝐵 ) ) | 
						
							| 98 | 2 97 | syl | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  { 𝐵 } 𝑦  ≤s  𝐵  ↔  𝐵  ≤s  𝐵 ) ) | 
						
							| 99 | 95 98 | mpbird | ⊢ ( 𝜑  →  ∃ 𝑦  ∈  { 𝐵 } 𝑦  ≤s  𝐵 ) | 
						
							| 100 | 99 | olcd | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  (  L  ‘ 𝐵 ) 𝐶  ≤s  𝑥  ∨  ∃ 𝑦  ∈  { 𝐵 } 𝑦  ≤s  𝐵 ) ) | 
						
							| 101 |  | lltropt | ⊢ (  L  ‘ 𝐵 )  <<s  (  R  ‘ 𝐵 ) | 
						
							| 102 | 101 | a1i | ⊢ ( 𝜑  →  (  L  ‘ 𝐵 )  <<s  (  R  ‘ 𝐵 ) ) | 
						
							| 103 |  | lrcut | ⊢ ( 𝐵  ∈   No   →  ( (  L  ‘ 𝐵 )  |s  (  R  ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 104 | 2 103 | syl | ⊢ ( 𝜑  →  ( (  L  ‘ 𝐵 )  |s  (  R  ‘ 𝐵 ) )  =  𝐵 ) | 
						
							| 105 | 104 | eqcomd | ⊢ ( 𝜑  →  𝐵  =  ( (  L  ‘ 𝐵 )  |s  (  R  ‘ 𝐵 ) ) ) | 
						
							| 106 |  | sltrec | ⊢ ( ( ( { 𝐴 }  <<s  { 𝐵 }  ∧  (  L  ‘ 𝐵 )  <<s  (  R  ‘ 𝐵 ) )  ∧  ( 𝐶  =  ( { 𝐴 }  |s  { 𝐵 } )  ∧  𝐵  =  ( (  L  ‘ 𝐵 )  |s  (  R  ‘ 𝐵 ) ) ) )  →  ( 𝐶  <s  𝐵  ↔  ( ∃ 𝑥  ∈  (  L  ‘ 𝐵 ) 𝐶  ≤s  𝑥  ∨  ∃ 𝑦  ∈  { 𝐵 } 𝑦  ≤s  𝐵 ) ) ) | 
						
							| 107 | 6 102 11 105 106 | syl22anc | ⊢ ( 𝜑  →  ( 𝐶  <s  𝐵  ↔  ( ∃ 𝑥  ∈  (  L  ‘ 𝐵 ) 𝐶  ≤s  𝑥  ∨  ∃ 𝑦  ∈  { 𝐵 } 𝑦  ≤s  𝐵 ) ) ) | 
						
							| 108 | 100 107 | mpbird | ⊢ ( 𝜑  →  𝐶  <s  𝐵 ) | 
						
							| 109 | 8 2 2 | sltadd2d | ⊢ ( 𝜑  →  ( 𝐶  <s  𝐵  ↔  ( 𝐵  +s  𝐶 )  <s  ( 𝐵  +s  𝐵 ) ) ) | 
						
							| 110 | 108 109 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  +s  𝐶 )  <s  ( 𝐵  +s  𝐵 ) ) | 
						
							| 111 |  | no2times | ⊢ ( 𝐵  ∈   No   →  ( 2s  ·s  𝐵 )  =  ( 𝐵  +s  𝐵 ) ) | 
						
							| 112 | 2 111 | syl | ⊢ ( 𝜑  →  ( 2s  ·s  𝐵 )  =  ( 𝐵  +s  𝐵 ) ) | 
						
							| 113 | 110 112 | breqtrrd | ⊢ ( 𝜑  →  ( 𝐵  +s  𝐶 )  <s  ( 2s  ·s  𝐵 ) ) | 
						
							| 114 | 93 55 113 | sltled | ⊢ ( 𝜑  →  ( 𝐵  +s  𝐶 )  ≤s  ( 2s  ·s  𝐵 ) ) | 
						
							| 115 |  | ovex | ⊢ ( 𝐵  +s  𝐶 )  ∈  V | 
						
							| 116 |  | breq1 | ⊢ ( 𝑦  =  ( 𝐵  +s  𝐶 )  →  ( 𝑦  ≤s  𝑥  ↔  ( 𝐵  +s  𝐶 )  ≤s  𝑥 ) ) | 
						
							| 117 | 115 116 | rexsn | ⊢ ( ∃ 𝑦  ∈  { ( 𝐵  +s  𝐶 ) } 𝑦  ≤s  𝑥  ↔  ( 𝐵  +s  𝐶 )  ≤s  𝑥 ) | 
						
							| 118 | 117 | ralbii | ⊢ ( ∀ 𝑥  ∈  { ( 2s  ·s  𝐵 ) } ∃ 𝑦  ∈  { ( 𝐵  +s  𝐶 ) } 𝑦  ≤s  𝑥  ↔  ∀ 𝑥  ∈  { ( 2s  ·s  𝐵 ) } ( 𝐵  +s  𝐶 )  ≤s  𝑥 ) | 
						
							| 119 |  | ovex | ⊢ ( 2s  ·s  𝐵 )  ∈  V | 
						
							| 120 |  | breq2 | ⊢ ( 𝑥  =  ( 2s  ·s  𝐵 )  →  ( ( 𝐵  +s  𝐶 )  ≤s  𝑥  ↔  ( 𝐵  +s  𝐶 )  ≤s  ( 2s  ·s  𝐵 ) ) ) | 
						
							| 121 | 119 120 | ralsn | ⊢ ( ∀ 𝑥  ∈  { ( 2s  ·s  𝐵 ) } ( 𝐵  +s  𝐶 )  ≤s  𝑥  ↔  ( 𝐵  +s  𝐶 )  ≤s  ( 2s  ·s  𝐵 ) ) | 
						
							| 122 | 118 121 | bitri | ⊢ ( ∀ 𝑥  ∈  { ( 2s  ·s  𝐵 ) } ∃ 𝑦  ∈  { ( 𝐵  +s  𝐶 ) } 𝑦  ≤s  𝑥  ↔  ( 𝐵  +s  𝐶 )  ≤s  ( 2s  ·s  𝐵 ) ) | 
						
							| 123 | 114 122 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  { ( 2s  ·s  𝐵 ) } ∃ 𝑦  ∈  { ( 𝐵  +s  𝐶 ) } 𝑦  ≤s  𝑥 ) | 
						
							| 124 | 1 2 | addscld | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐵 )  ∈   No  ) | 
						
							| 125 | 8 2 1 | sltadd2d | ⊢ ( 𝜑  →  ( 𝐶  <s  𝐵  ↔  ( 𝐴  +s  𝐶 )  <s  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 126 | 108 125 | mpbid | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐶 )  <s  ( 𝐴  +s  𝐵 ) ) | 
						
							| 127 | 62 124 126 | ssltsn | ⊢ ( 𝜑  →  { ( 𝐴  +s  𝐶 ) }  <<s  { ( 𝐴  +s  𝐵 ) } ) | 
						
							| 128 | 4 | sneqd | ⊢ ( 𝜑  →  { ( { ( 2s  ·s  𝐴 ) }  |s  { ( 2s  ·s  𝐵 ) } ) }  =  { ( 𝐴  +s  𝐵 ) } ) | 
						
							| 129 | 127 128 | breqtrrd | ⊢ ( 𝜑  →  { ( 𝐴  +s  𝐶 ) }  <<s  { ( { ( 2s  ·s  𝐴 ) }  |s  { ( 2s  ·s  𝐵 ) } ) } ) | 
						
							| 130 | 1 2 | addscomd | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐵 )  =  ( 𝐵  +s  𝐴 ) ) | 
						
							| 131 | 1 8 2 | sltadd2d | ⊢ ( 𝜑  →  ( 𝐴  <s  𝐶  ↔  ( 𝐵  +s  𝐴 )  <s  ( 𝐵  +s  𝐶 ) ) ) | 
						
							| 132 | 79 131 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  +s  𝐴 )  <s  ( 𝐵  +s  𝐶 ) ) | 
						
							| 133 | 130 132 | eqbrtrd | ⊢ ( 𝜑  →  ( 𝐴  +s  𝐵 )  <s  ( 𝐵  +s  𝐶 ) ) | 
						
							| 134 | 124 93 133 | ssltsn | ⊢ ( 𝜑  →  { ( 𝐴  +s  𝐵 ) }  <<s  { ( 𝐵  +s  𝐶 ) } ) | 
						
							| 135 | 128 134 | eqbrtrd | ⊢ ( 𝜑  →  { ( { ( 2s  ·s  𝐴 ) }  |s  { ( 2s  ·s  𝐵 ) } ) }  <<s  { ( 𝐵  +s  𝐶 ) } ) | 
						
							| 136 | 61 92 123 129 135 | cofcut1d | ⊢ ( 𝜑  →  ( { ( 2s  ·s  𝐴 ) }  |s  { ( 2s  ·s  𝐵 ) } )  =  ( { ( 𝐴  +s  𝐶 ) }  |s  { ( 𝐵  +s  𝐶 ) } ) ) | 
						
							| 137 | 51 136 4 | 3eqtr2d | ⊢ ( 𝜑  →  ( ( { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐴 } 𝑥  =  ( 𝐶  +s  𝑦 ) } )  |s  ( { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝑦  +s  𝐶 ) }  ∪  { 𝑥  ∣  ∃ 𝑦  ∈  { 𝐵 } 𝑥  =  ( 𝐶  +s  𝑦 ) } ) )  =  ( 𝐴  +s  𝐵 ) ) | 
						
							| 138 | 10 12 137 | 3eqtrd | ⊢ ( 𝜑  →  ( 2s  ·s  𝐶 )  =  ( 𝐴  +s  𝐵 ) ) | 
						
							| 139 |  | 2ne0s | ⊢ 2s  ≠   0s | 
						
							| 140 | 139 | a1i | ⊢ ( 𝜑  →  2s  ≠   0s  ) | 
						
							| 141 | 124 8 53 140 | divsmuld | ⊢ ( 𝜑  →  ( ( ( 𝐴  +s  𝐵 )  /su  2s )  =  𝐶  ↔  ( 2s  ·s  𝐶 )  =  ( 𝐴  +s  𝐵 ) ) ) | 
						
							| 142 | 138 141 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐴  +s  𝐵 )  /su  2s )  =  𝐶 ) | 
						
							| 143 | 142 | eqcomd | ⊢ ( 𝜑  →  𝐶  =  ( ( 𝐴  +s  𝐵 )  /su  2s ) ) |