Metamath Proof Explorer


Theorem halfcut

Description: Relate the cut of twice of two numbers to the cut of the numbers. Lemma 4.2 of Gonshor p. 28. (Contributed by Scott Fenton, 7-Aug-2025) Avoid the axiom of infinity. (Proof modified by Scott Fenton, 6-Sep-2025.)

Ref Expression
Hypotheses halfcut.1 ( 𝜑𝐴 No )
halfcut.2 ( 𝜑𝐵 No )
halfcut.3 ( 𝜑𝐴 <s 𝐵 )
halfcut.4 ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) = ( 𝐴 +s 𝐵 ) )
halfcut.5 𝐶 = ( { 𝐴 } |s { 𝐵 } )
Assertion halfcut ( 𝜑𝐶 = ( ( 𝐴 +s 𝐵 ) /su 2s ) )

Proof

Step Hyp Ref Expression
1 halfcut.1 ( 𝜑𝐴 No )
2 halfcut.2 ( 𝜑𝐵 No )
3 halfcut.3 ( 𝜑𝐴 <s 𝐵 )
4 halfcut.4 ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) = ( 𝐴 +s 𝐵 ) )
5 halfcut.5 𝐶 = ( { 𝐴 } |s { 𝐵 } )
6 1 2 3 ssltsn ( 𝜑 → { 𝐴 } <<s { 𝐵 } )
7 6 scutcld ( 𝜑 → ( { 𝐴 } |s { 𝐵 } ) ∈ No )
8 5 7 eqeltrid ( 𝜑𝐶 No )
9 no2times ( 𝐶 No → ( 2s ·s 𝐶 ) = ( 𝐶 +s 𝐶 ) )
10 8 9 syl ( 𝜑 → ( 2s ·s 𝐶 ) = ( 𝐶 +s 𝐶 ) )
11 5 a1i ( 𝜑𝐶 = ( { 𝐴 } |s { 𝐵 } ) )
12 6 6 11 11 addsunif ( 𝜑 → ( 𝐶 +s 𝐶 ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) ) )
13 oveq1 ( 𝑦 = 𝐴 → ( 𝑦 +s 𝐶 ) = ( 𝐴 +s 𝐶 ) )
14 13 eqeq2d ( 𝑦 = 𝐴 → ( 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) )
15 14 rexsng ( 𝐴 No → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) )
16 1 15 syl ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) )
17 16 abbidv ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } = { 𝑥𝑥 = ( 𝐴 +s 𝐶 ) } )
18 oveq2 ( 𝑦 = 𝐴 → ( 𝐶 +s 𝑦 ) = ( 𝐶 +s 𝐴 ) )
19 18 eqeq2d ( 𝑦 = 𝐴 → ( 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐴 ) ) )
20 19 rexsng ( 𝐴 No → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐴 ) ) )
21 1 20 syl ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐴 ) ) )
22 8 1 addscomd ( 𝜑 → ( 𝐶 +s 𝐴 ) = ( 𝐴 +s 𝐶 ) )
23 22 eqeq2d ( 𝜑 → ( 𝑥 = ( 𝐶 +s 𝐴 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) )
24 21 23 bitrd ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) )
25 24 abbidv ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } = { 𝑥𝑥 = ( 𝐴 +s 𝐶 ) } )
26 17 25 uneq12d ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = ( { 𝑥𝑥 = ( 𝐴 +s 𝐶 ) } ∪ { 𝑥𝑥 = ( 𝐴 +s 𝐶 ) } ) )
27 df-sn { ( 𝐴 +s 𝐶 ) } = { 𝑥𝑥 = ( 𝐴 +s 𝐶 ) }
28 unidm ( { 𝑥𝑥 = ( 𝐴 +s 𝐶 ) } ∪ { 𝑥𝑥 = ( 𝐴 +s 𝐶 ) } ) = { 𝑥𝑥 = ( 𝐴 +s 𝐶 ) }
29 27 28 eqtr4i { ( 𝐴 +s 𝐶 ) } = ( { 𝑥𝑥 = ( 𝐴 +s 𝐶 ) } ∪ { 𝑥𝑥 = ( 𝐴 +s 𝐶 ) } )
30 26 29 eqtr4di ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = { ( 𝐴 +s 𝐶 ) } )
31 oveq1 ( 𝑦 = 𝐵 → ( 𝑦 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) )
32 31 eqeq2d ( 𝑦 = 𝐵 → ( 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) )
33 32 rexsng ( 𝐵 No → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) )
34 2 33 syl ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) )
35 34 abbidv ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } = { 𝑥𝑥 = ( 𝐵 +s 𝐶 ) } )
36 oveq2 ( 𝑦 = 𝐵 → ( 𝐶 +s 𝑦 ) = ( 𝐶 +s 𝐵 ) )
37 36 eqeq2d ( 𝑦 = 𝐵 → ( 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐵 ) ) )
38 37 rexsng ( 𝐵 No → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐵 ) ) )
39 2 38 syl ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐵 ) ) )
40 8 2 addscomd ( 𝜑 → ( 𝐶 +s 𝐵 ) = ( 𝐵 +s 𝐶 ) )
41 40 eqeq2d ( 𝜑 → ( 𝑥 = ( 𝐶 +s 𝐵 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) )
42 39 41 bitrd ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) )
43 42 abbidv ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } = { 𝑥𝑥 = ( 𝐵 +s 𝐶 ) } )
44 35 43 uneq12d ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = ( { 𝑥𝑥 = ( 𝐵 +s 𝐶 ) } ∪ { 𝑥𝑥 = ( 𝐵 +s 𝐶 ) } ) )
45 df-sn { ( 𝐵 +s 𝐶 ) } = { 𝑥𝑥 = ( 𝐵 +s 𝐶 ) }
46 unidm ( { 𝑥𝑥 = ( 𝐵 +s 𝐶 ) } ∪ { 𝑥𝑥 = ( 𝐵 +s 𝐶 ) } ) = { 𝑥𝑥 = ( 𝐵 +s 𝐶 ) }
47 45 46 eqtr4i { ( 𝐵 +s 𝐶 ) } = ( { 𝑥𝑥 = ( 𝐵 +s 𝐶 ) } ∪ { 𝑥𝑥 = ( 𝐵 +s 𝐶 ) } )
48 44 47 eqtr4di ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = { ( 𝐵 +s 𝐶 ) } )
49 30 48 oveq12d ( 𝜑 → ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) ) = ( { ( 𝐴 +s 𝐶 ) } |s { ( 𝐵 +s 𝐶 ) } ) )
50 2sno 2s No
51 50 a1i ( 𝜑 → 2s No )
52 51 1 mulscld ( 𝜑 → ( 2s ·s 𝐴 ) ∈ No )
53 51 2 mulscld ( 𝜑 → ( 2s ·s 𝐵 ) ∈ No )
54 2nns 2s ∈ ℕs
55 nnsgt0 ( 2s ∈ ℕs → 0s <s 2s )
56 54 55 mp1i ( 𝜑 → 0s <s 2s )
57 1 2 51 56 sltmul2d ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 2s ·s 𝐴 ) <s ( 2s ·s 𝐵 ) ) )
58 3 57 mpbid ( 𝜑 → ( 2s ·s 𝐴 ) <s ( 2s ·s 𝐵 ) )
59 52 53 58 ssltsn ( 𝜑 → { ( 2s ·s 𝐴 ) } <<s { ( 2s ·s 𝐵 ) } )
60 no2times ( 𝐴 No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) )
61 1 60 syl ( 𝜑 → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) )
62 slerflex ( 𝐴 No 𝐴 ≤s 𝐴 )
63 1 62 syl ( 𝜑𝐴 ≤s 𝐴 )
64 breq2 ( 𝑥 = 𝐴 → ( 𝐴 ≤s 𝑥𝐴 ≤s 𝐴 ) )
65 64 rexsng ( 𝐴 No → ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥𝐴 ≤s 𝐴 ) )
66 1 65 syl ( 𝜑 → ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥𝐴 ≤s 𝐴 ) )
67 63 66 mpbird ( 𝜑 → ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 )
68 67 orcd ( 𝜑 → ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ∨ ∃ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑦 ≤s 𝐶 ) )
69 lltropt ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 )
70 69 a1i ( 𝜑 → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) )
71 lrcut ( 𝐴 No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 )
72 1 71 syl ( 𝜑 → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 )
73 72 eqcomd ( 𝜑𝐴 = ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) )
74 70 6 73 11 sltrecd ( 𝜑 → ( 𝐴 <s 𝐶 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ∨ ∃ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑦 ≤s 𝐶 ) ) )
75 68 74 mpbird ( 𝜑𝐴 <s 𝐶 )
76 1 8 75 sltled ( 𝜑𝐴 ≤s 𝐶 )
77 1 8 1 sleadd2d ( 𝜑 → ( 𝐴 ≤s 𝐶 ↔ ( 𝐴 +s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) )
78 76 77 mpbid ( 𝜑 → ( 𝐴 +s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) )
79 61 78 eqbrtrd ( 𝜑 → ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) )
80 ovex ( 2s ·s 𝐴 ) ∈ V
81 breq1 ( 𝑥 = ( 2s ·s 𝐴 ) → ( 𝑥 ≤s 𝑦 ↔ ( 2s ·s 𝐴 ) ≤s 𝑦 ) )
82 81 rexbidv ( 𝑥 = ( 2s ·s 𝐴 ) → ( ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } ( 2s ·s 𝐴 ) ≤s 𝑦 ) )
83 80 82 ralsn ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } ( 2s ·s 𝐴 ) ≤s 𝑦 )
84 ovex ( 𝐴 +s 𝐶 ) ∈ V
85 breq2 ( 𝑦 = ( 𝐴 +s 𝐶 ) → ( ( 2s ·s 𝐴 ) ≤s 𝑦 ↔ ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) )
86 84 85 rexsn ( ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } ( 2s ·s 𝐴 ) ≤s 𝑦 ↔ ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) )
87 83 86 bitri ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 ↔ ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) )
88 79 87 sylibr ( 𝜑 → ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 )
89 slerflex ( 𝐵 No 𝐵 ≤s 𝐵 )
90 2 89 syl ( 𝜑𝐵 ≤s 𝐵 )
91 breq1 ( 𝑦 = 𝐵 → ( 𝑦 ≤s 𝐵𝐵 ≤s 𝐵 ) )
92 91 rexsng ( 𝐵 No → ( ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵𝐵 ≤s 𝐵 ) )
93 2 92 syl ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵𝐵 ≤s 𝐵 ) )
94 90 93 mpbird ( 𝜑 → ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 )
95 94 olcd ( 𝜑 → ( ∃ 𝑥 ∈ ( L ‘ 𝐵 ) 𝐶 ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ) )
96 lltropt ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 )
97 96 a1i ( 𝜑 → ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) )
98 lrcut ( 𝐵 No → ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) = 𝐵 )
99 2 98 syl ( 𝜑 → ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) = 𝐵 )
100 99 eqcomd ( 𝜑𝐵 = ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) )
101 6 97 11 100 sltrecd ( 𝜑 → ( 𝐶 <s 𝐵 ↔ ( ∃ 𝑥 ∈ ( L ‘ 𝐵 ) 𝐶 ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ) ) )
102 95 101 mpbird ( 𝜑𝐶 <s 𝐵 )
103 8 2 102 sltled ( 𝜑𝐶 ≤s 𝐵 )
104 8 2 2 sleadd2d ( 𝜑 → ( 𝐶 ≤s 𝐵 ↔ ( 𝐵 +s 𝐶 ) ≤s ( 𝐵 +s 𝐵 ) ) )
105 103 104 mpbid ( 𝜑 → ( 𝐵 +s 𝐶 ) ≤s ( 𝐵 +s 𝐵 ) )
106 no2times ( 𝐵 No → ( 2s ·s 𝐵 ) = ( 𝐵 +s 𝐵 ) )
107 2 106 syl ( 𝜑 → ( 2s ·s 𝐵 ) = ( 𝐵 +s 𝐵 ) )
108 105 107 breqtrrd ( 𝜑 → ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) )
109 ovex ( 2s ·s 𝐵 ) ∈ V
110 breq2 ( 𝑥 = ( 2s ·s 𝐵 ) → ( 𝑦 ≤s 𝑥𝑦 ≤s ( 2s ·s 𝐵 ) ) )
111 110 rexbidv ( 𝑥 = ( 2s ·s 𝐵 ) → ( ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 ↔ ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s ( 2s ·s 𝐵 ) ) )
112 109 111 ralsn ( ∀ 𝑥 ∈ { ( 2s ·s 𝐵 ) } ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 ↔ ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s ( 2s ·s 𝐵 ) )
113 ovex ( 𝐵 +s 𝐶 ) ∈ V
114 breq1 ( 𝑦 = ( 𝐵 +s 𝐶 ) → ( 𝑦 ≤s ( 2s ·s 𝐵 ) ↔ ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) ) )
115 113 114 rexsn ( ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s ( 2s ·s 𝐵 ) ↔ ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) )
116 112 115 bitri ( ∀ 𝑥 ∈ { ( 2s ·s 𝐵 ) } ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 ↔ ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) )
117 108 116 sylibr ( 𝜑 → ∀ 𝑥 ∈ { ( 2s ·s 𝐵 ) } ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 )
118 1 8 addscld ( 𝜑 → ( 𝐴 +s 𝐶 ) ∈ No )
119 1 2 addscld ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No )
120 8 2 1 sltadd2d ( 𝜑 → ( 𝐶 <s 𝐵 ↔ ( 𝐴 +s 𝐶 ) <s ( 𝐴 +s 𝐵 ) ) )
121 102 120 mpbid ( 𝜑 → ( 𝐴 +s 𝐶 ) <s ( 𝐴 +s 𝐵 ) )
122 118 119 121 ssltsn ( 𝜑 → { ( 𝐴 +s 𝐶 ) } <<s { ( 𝐴 +s 𝐵 ) } )
123 4 sneqd ( 𝜑 → { ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) } = { ( 𝐴 +s 𝐵 ) } )
124 122 123 breqtrrd ( 𝜑 → { ( 𝐴 +s 𝐶 ) } <<s { ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) } )
125 2 8 addscld ( 𝜑 → ( 𝐵 +s 𝐶 ) ∈ No )
126 2 1 addscomd ( 𝜑 → ( 𝐵 +s 𝐴 ) = ( 𝐴 +s 𝐵 ) )
127 1 8 2 sltadd2d ( 𝜑 → ( 𝐴 <s 𝐶 ↔ ( 𝐵 +s 𝐴 ) <s ( 𝐵 +s 𝐶 ) ) )
128 75 127 mpbid ( 𝜑 → ( 𝐵 +s 𝐴 ) <s ( 𝐵 +s 𝐶 ) )
129 126 128 eqbrtrrd ( 𝜑 → ( 𝐴 +s 𝐵 ) <s ( 𝐵 +s 𝐶 ) )
130 119 125 129 ssltsn ( 𝜑 → { ( 𝐴 +s 𝐵 ) } <<s { ( 𝐵 +s 𝐶 ) } )
131 123 130 eqbrtrd ( 𝜑 → { ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) } <<s { ( 𝐵 +s 𝐶 ) } )
132 59 88 117 124 131 cofcut1d ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) = ( { ( 𝐴 +s 𝐶 ) } |s { ( 𝐵 +s 𝐶 ) } ) )
133 49 132 4 3eqtr2d ( 𝜑 → ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) ) = ( 𝐴 +s 𝐵 ) )
134 12 133 eqtrd ( 𝜑 → ( 𝐶 +s 𝐶 ) = ( 𝐴 +s 𝐵 ) )
135 10 134 eqtrd ( 𝜑 → ( 2s ·s 𝐶 ) = ( 𝐴 +s 𝐵 ) )
136 2ne0s 2s ≠ 0s
137 136 a1i ( 𝜑 → 2s ≠ 0s )
138 0sno 0s No
139 138 a1i ( ⊤ → 0s No )
140 1sno 1s No
141 140 a1i ( ⊤ → 1s No )
142 0slt1s 0s <s 1s
143 142 a1i ( ⊤ → 0s <s 1s )
144 139 141 143 ssltsn ( ⊤ → { 0s } <<s { 1s } )
145 144 scutcld ( ⊤ → ( { 0s } |s { 1s } ) ∈ No )
146 145 mptru ( { 0s } |s { 1s } ) ∈ No
147 twocut ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s
148 oveq2 ( 𝑥 = ( { 0s } |s { 1s } ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( { 0s } |s { 1s } ) ) )
149 148 eqeq1d ( 𝑥 = ( { 0s } |s { 1s } ) → ( ( 2s ·s 𝑥 ) = 1s ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) )
150 149 rspcev ( ( ( { 0s } |s { 1s } ) ∈ No ∧ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) → ∃ 𝑥 No ( 2s ·s 𝑥 ) = 1s )
151 146 147 150 mp2an 𝑥 No ( 2s ·s 𝑥 ) = 1s
152 151 a1i ( 𝜑 → ∃ 𝑥 No ( 2s ·s 𝑥 ) = 1s )
153 119 8 51 137 152 divsmulwd ( 𝜑 → ( ( ( 𝐴 +s 𝐵 ) /su 2s ) = 𝐶 ↔ ( 2s ·s 𝐶 ) = ( 𝐴 +s 𝐵 ) ) )
154 135 153 mpbird ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su 2s ) = 𝐶 )
155 154 eqcomd ( 𝜑𝐶 = ( ( 𝐴 +s 𝐵 ) /su 2s ) )