| Step |
Hyp |
Ref |
Expression |
| 1 |
|
halfcut.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
halfcut.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
halfcut.3 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
| 4 |
|
halfcut.4 |
⊢ ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) = ( 𝐴 +s 𝐵 ) ) |
| 5 |
|
halfcut.5 |
⊢ 𝐶 = ( { 𝐴 } |s { 𝐵 } ) |
| 6 |
1 2 3
|
ssltsn |
⊢ ( 𝜑 → { 𝐴 } <<s { 𝐵 } ) |
| 7 |
6
|
scutcld |
⊢ ( 𝜑 → ( { 𝐴 } |s { 𝐵 } ) ∈ No ) |
| 8 |
5 7
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
| 9 |
|
no2times |
⊢ ( 𝐶 ∈ No → ( 2s ·s 𝐶 ) = ( 𝐶 +s 𝐶 ) ) |
| 10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐶 ) = ( 𝐶 +s 𝐶 ) ) |
| 11 |
5
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( { 𝐴 } |s { 𝐵 } ) ) |
| 12 |
6 6 11 11
|
addsunif |
⊢ ( 𝜑 → ( 𝐶 +s 𝐶 ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) ) ) |
| 13 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 +s 𝐶 ) = ( 𝐴 +s 𝐶 ) ) |
| 14 |
13
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) ) |
| 15 |
14
|
rexsng |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) ) |
| 16 |
1 15
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) ) |
| 17 |
16
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } = { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } ) |
| 18 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐶 +s 𝑦 ) = ( 𝐶 +s 𝐴 ) ) |
| 19 |
18
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐴 ) ) ) |
| 20 |
19
|
rexsng |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐴 ) ) ) |
| 21 |
1 20
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐴 ) ) ) |
| 22 |
8 1
|
addscomd |
⊢ ( 𝜑 → ( 𝐶 +s 𝐴 ) = ( 𝐴 +s 𝐶 ) ) |
| 23 |
22
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑥 = ( 𝐶 +s 𝐴 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) ) |
| 24 |
21 23
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) ) |
| 25 |
24
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } = { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } ) |
| 26 |
17 25
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = ( { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } ) ) |
| 27 |
|
df-sn |
⊢ { ( 𝐴 +s 𝐶 ) } = { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } |
| 28 |
|
unidm |
⊢ ( { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } ) = { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } |
| 29 |
27 28
|
eqtr4i |
⊢ { ( 𝐴 +s 𝐶 ) } = ( { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } ) |
| 30 |
26 29
|
eqtr4di |
⊢ ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = { ( 𝐴 +s 𝐶 ) } ) |
| 31 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ) |
| 32 |
31
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) ) |
| 33 |
32
|
rexsng |
⊢ ( 𝐵 ∈ No → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) ) |
| 34 |
2 33
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) ) |
| 35 |
34
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } = { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } ) |
| 36 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐶 +s 𝑦 ) = ( 𝐶 +s 𝐵 ) ) |
| 37 |
36
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐵 ) ) ) |
| 38 |
37
|
rexsng |
⊢ ( 𝐵 ∈ No → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐵 ) ) ) |
| 39 |
2 38
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐵 ) ) ) |
| 40 |
8 2
|
addscomd |
⊢ ( 𝜑 → ( 𝐶 +s 𝐵 ) = ( 𝐵 +s 𝐶 ) ) |
| 41 |
40
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑥 = ( 𝐶 +s 𝐵 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) ) |
| 42 |
39 41
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) ) |
| 43 |
42
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } = { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } ) |
| 44 |
35 43
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = ( { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } ) ) |
| 45 |
|
df-sn |
⊢ { ( 𝐵 +s 𝐶 ) } = { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } |
| 46 |
|
unidm |
⊢ ( { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } ) = { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } |
| 47 |
45 46
|
eqtr4i |
⊢ { ( 𝐵 +s 𝐶 ) } = ( { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } ∪ { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } ) |
| 48 |
44 47
|
eqtr4di |
⊢ ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = { ( 𝐵 +s 𝐶 ) } ) |
| 49 |
30 48
|
oveq12d |
⊢ ( 𝜑 → ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) ) = ( { ( 𝐴 +s 𝐶 ) } |s { ( 𝐵 +s 𝐶 ) } ) ) |
| 50 |
|
2sno |
⊢ 2s ∈ No |
| 51 |
50
|
a1i |
⊢ ( 𝜑 → 2s ∈ No ) |
| 52 |
51 1
|
mulscld |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ∈ No ) |
| 53 |
51 2
|
mulscld |
⊢ ( 𝜑 → ( 2s ·s 𝐵 ) ∈ No ) |
| 54 |
|
2nns |
⊢ 2s ∈ ℕs |
| 55 |
|
nnsgt0 |
⊢ ( 2s ∈ ℕs → 0s <s 2s ) |
| 56 |
54 55
|
mp1i |
⊢ ( 𝜑 → 0s <s 2s ) |
| 57 |
1 2 51 56
|
sltmul2d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 2s ·s 𝐴 ) <s ( 2s ·s 𝐵 ) ) ) |
| 58 |
3 57
|
mpbid |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) <s ( 2s ·s 𝐵 ) ) |
| 59 |
52 53 58
|
ssltsn |
⊢ ( 𝜑 → { ( 2s ·s 𝐴 ) } <<s { ( 2s ·s 𝐵 ) } ) |
| 60 |
|
no2times |
⊢ ( 𝐴 ∈ No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
| 61 |
1 60
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
| 62 |
|
slerflex |
⊢ ( 𝐴 ∈ No → 𝐴 ≤s 𝐴 ) |
| 63 |
1 62
|
syl |
⊢ ( 𝜑 → 𝐴 ≤s 𝐴 ) |
| 64 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴 ) ) |
| 65 |
64
|
rexsng |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴 ) ) |
| 66 |
1 65
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴 ) ) |
| 67 |
63 66
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ) |
| 68 |
67
|
orcd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ∨ ∃ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑦 ≤s 𝐶 ) ) |
| 69 |
|
lltropt |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |
| 70 |
69
|
a1i |
⊢ ( 𝜑 → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
| 71 |
|
lrcut |
⊢ ( 𝐴 ∈ No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
| 72 |
1 71
|
syl |
⊢ ( 𝜑 → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
| 73 |
72
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) ) |
| 74 |
|
sltrec |
⊢ ( ( ( ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ∧ { 𝐴 } <<s { 𝐵 } ) ∧ ( 𝐴 = ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) ∧ 𝐶 = ( { 𝐴 } |s { 𝐵 } ) ) ) → ( 𝐴 <s 𝐶 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ∨ ∃ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑦 ≤s 𝐶 ) ) ) |
| 75 |
70 6 73 11 74
|
syl22anc |
⊢ ( 𝜑 → ( 𝐴 <s 𝐶 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ∨ ∃ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑦 ≤s 𝐶 ) ) ) |
| 76 |
68 75
|
mpbird |
⊢ ( 𝜑 → 𝐴 <s 𝐶 ) |
| 77 |
1 8 76
|
sltled |
⊢ ( 𝜑 → 𝐴 ≤s 𝐶 ) |
| 78 |
1 8 1
|
sleadd2d |
⊢ ( 𝜑 → ( 𝐴 ≤s 𝐶 ↔ ( 𝐴 +s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) ) |
| 79 |
77 78
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 +s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) |
| 80 |
61 79
|
eqbrtrd |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) |
| 81 |
|
ovex |
⊢ ( 2s ·s 𝐴 ) ∈ V |
| 82 |
|
breq1 |
⊢ ( 𝑥 = ( 2s ·s 𝐴 ) → ( 𝑥 ≤s 𝑦 ↔ ( 2s ·s 𝐴 ) ≤s 𝑦 ) ) |
| 83 |
82
|
rexbidv |
⊢ ( 𝑥 = ( 2s ·s 𝐴 ) → ( ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } ( 2s ·s 𝐴 ) ≤s 𝑦 ) ) |
| 84 |
81 83
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 ↔ ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } ( 2s ·s 𝐴 ) ≤s 𝑦 ) |
| 85 |
|
ovex |
⊢ ( 𝐴 +s 𝐶 ) ∈ V |
| 86 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐴 +s 𝐶 ) → ( ( 2s ·s 𝐴 ) ≤s 𝑦 ↔ ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) ) |
| 87 |
85 86
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } ( 2s ·s 𝐴 ) ≤s 𝑦 ↔ ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) |
| 88 |
84 87
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 ↔ ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) |
| 89 |
80 88
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 ) |
| 90 |
|
slerflex |
⊢ ( 𝐵 ∈ No → 𝐵 ≤s 𝐵 ) |
| 91 |
2 90
|
syl |
⊢ ( 𝜑 → 𝐵 ≤s 𝐵 ) |
| 92 |
|
breq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵 ) ) |
| 93 |
92
|
rexsng |
⊢ ( 𝐵 ∈ No → ( ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵 ) ) |
| 94 |
2 93
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵 ) ) |
| 95 |
91 94
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ) |
| 96 |
95
|
olcd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( L ‘ 𝐵 ) 𝐶 ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ) ) |
| 97 |
|
lltropt |
⊢ ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) |
| 98 |
97
|
a1i |
⊢ ( 𝜑 → ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) ) |
| 99 |
|
lrcut |
⊢ ( 𝐵 ∈ No → ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) = 𝐵 ) |
| 100 |
2 99
|
syl |
⊢ ( 𝜑 → ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) = 𝐵 ) |
| 101 |
100
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) ) |
| 102 |
|
sltrec |
⊢ ( ( ( { 𝐴 } <<s { 𝐵 } ∧ ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) ) ∧ ( 𝐶 = ( { 𝐴 } |s { 𝐵 } ) ∧ 𝐵 = ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) ) ) → ( 𝐶 <s 𝐵 ↔ ( ∃ 𝑥 ∈ ( L ‘ 𝐵 ) 𝐶 ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ) ) ) |
| 103 |
6 98 11 101 102
|
syl22anc |
⊢ ( 𝜑 → ( 𝐶 <s 𝐵 ↔ ( ∃ 𝑥 ∈ ( L ‘ 𝐵 ) 𝐶 ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ) ) ) |
| 104 |
96 103
|
mpbird |
⊢ ( 𝜑 → 𝐶 <s 𝐵 ) |
| 105 |
8 2 104
|
sltled |
⊢ ( 𝜑 → 𝐶 ≤s 𝐵 ) |
| 106 |
8 2 2
|
sleadd2d |
⊢ ( 𝜑 → ( 𝐶 ≤s 𝐵 ↔ ( 𝐵 +s 𝐶 ) ≤s ( 𝐵 +s 𝐵 ) ) ) |
| 107 |
105 106
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) ≤s ( 𝐵 +s 𝐵 ) ) |
| 108 |
|
no2times |
⊢ ( 𝐵 ∈ No → ( 2s ·s 𝐵 ) = ( 𝐵 +s 𝐵 ) ) |
| 109 |
2 108
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐵 ) = ( 𝐵 +s 𝐵 ) ) |
| 110 |
107 109
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) ) |
| 111 |
|
ovex |
⊢ ( 2s ·s 𝐵 ) ∈ V |
| 112 |
|
breq2 |
⊢ ( 𝑥 = ( 2s ·s 𝐵 ) → ( 𝑦 ≤s 𝑥 ↔ 𝑦 ≤s ( 2s ·s 𝐵 ) ) ) |
| 113 |
112
|
rexbidv |
⊢ ( 𝑥 = ( 2s ·s 𝐵 ) → ( ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 ↔ ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s ( 2s ·s 𝐵 ) ) ) |
| 114 |
111 113
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐵 ) } ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 ↔ ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s ( 2s ·s 𝐵 ) ) |
| 115 |
|
ovex |
⊢ ( 𝐵 +s 𝐶 ) ∈ V |
| 116 |
|
breq1 |
⊢ ( 𝑦 = ( 𝐵 +s 𝐶 ) → ( 𝑦 ≤s ( 2s ·s 𝐵 ) ↔ ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) ) ) |
| 117 |
115 116
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s ( 2s ·s 𝐵 ) ↔ ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) ) |
| 118 |
114 117
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐵 ) } ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 ↔ ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) ) |
| 119 |
110 118
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { ( 2s ·s 𝐵 ) } ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 ) |
| 120 |
1 8
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐶 ) ∈ No ) |
| 121 |
1 2
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
| 122 |
8 2 1
|
sltadd2d |
⊢ ( 𝜑 → ( 𝐶 <s 𝐵 ↔ ( 𝐴 +s 𝐶 ) <s ( 𝐴 +s 𝐵 ) ) ) |
| 123 |
104 122
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 +s 𝐶 ) <s ( 𝐴 +s 𝐵 ) ) |
| 124 |
120 121 123
|
ssltsn |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐶 ) } <<s { ( 𝐴 +s 𝐵 ) } ) |
| 125 |
4
|
sneqd |
⊢ ( 𝜑 → { ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) } = { ( 𝐴 +s 𝐵 ) } ) |
| 126 |
124 125
|
breqtrrd |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐶 ) } <<s { ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) } ) |
| 127 |
2 8
|
addscld |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) ∈ No ) |
| 128 |
2 1
|
addscomd |
⊢ ( 𝜑 → ( 𝐵 +s 𝐴 ) = ( 𝐴 +s 𝐵 ) ) |
| 129 |
1 8 2
|
sltadd2d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐶 ↔ ( 𝐵 +s 𝐴 ) <s ( 𝐵 +s 𝐶 ) ) ) |
| 130 |
76 129
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 +s 𝐴 ) <s ( 𝐵 +s 𝐶 ) ) |
| 131 |
128 130
|
eqbrtrrd |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) <s ( 𝐵 +s 𝐶 ) ) |
| 132 |
121 127 131
|
ssltsn |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } <<s { ( 𝐵 +s 𝐶 ) } ) |
| 133 |
125 132
|
eqbrtrd |
⊢ ( 𝜑 → { ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) } <<s { ( 𝐵 +s 𝐶 ) } ) |
| 134 |
59 89 119 126 133
|
cofcut1d |
⊢ ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) = ( { ( 𝐴 +s 𝐶 ) } |s { ( 𝐵 +s 𝐶 ) } ) ) |
| 135 |
49 134 4
|
3eqtr2d |
⊢ ( 𝜑 → ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) ) = ( 𝐴 +s 𝐵 ) ) |
| 136 |
12 135
|
eqtrd |
⊢ ( 𝜑 → ( 𝐶 +s 𝐶 ) = ( 𝐴 +s 𝐵 ) ) |
| 137 |
10 136
|
eqtrd |
⊢ ( 𝜑 → ( 2s ·s 𝐶 ) = ( 𝐴 +s 𝐵 ) ) |
| 138 |
|
2ne0s |
⊢ 2s ≠ 0s |
| 139 |
138
|
a1i |
⊢ ( 𝜑 → 2s ≠ 0s ) |
| 140 |
|
0sno |
⊢ 0s ∈ No |
| 141 |
140
|
a1i |
⊢ ( ⊤ → 0s ∈ No ) |
| 142 |
|
1sno |
⊢ 1s ∈ No |
| 143 |
142
|
a1i |
⊢ ( ⊤ → 1s ∈ No ) |
| 144 |
|
0slt1s |
⊢ 0s <s 1s |
| 145 |
144
|
a1i |
⊢ ( ⊤ → 0s <s 1s ) |
| 146 |
141 143 145
|
ssltsn |
⊢ ( ⊤ → { 0s } <<s { 1s } ) |
| 147 |
146
|
scutcld |
⊢ ( ⊤ → ( { 0s } |s { 1s } ) ∈ No ) |
| 148 |
147
|
mptru |
⊢ ( { 0s } |s { 1s } ) ∈ No |
| 149 |
|
twocut |
⊢ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s |
| 150 |
|
oveq2 |
⊢ ( 𝑥 = ( { 0s } |s { 1s } ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( { 0s } |s { 1s } ) ) ) |
| 151 |
150
|
eqeq1d |
⊢ ( 𝑥 = ( { 0s } |s { 1s } ) → ( ( 2s ·s 𝑥 ) = 1s ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) ) |
| 152 |
151
|
rspcev |
⊢ ( ( ( { 0s } |s { 1s } ) ∈ No ∧ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) → ∃ 𝑥 ∈ No ( 2s ·s 𝑥 ) = 1s ) |
| 153 |
148 149 152
|
mp2an |
⊢ ∃ 𝑥 ∈ No ( 2s ·s 𝑥 ) = 1s |
| 154 |
153
|
a1i |
⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 2s ·s 𝑥 ) = 1s ) |
| 155 |
121 8 51 139 154
|
divsmulwd |
⊢ ( 𝜑 → ( ( ( 𝐴 +s 𝐵 ) /su 2s ) = 𝐶 ↔ ( 2s ·s 𝐶 ) = ( 𝐴 +s 𝐵 ) ) ) |
| 156 |
137 155
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su 2s ) = 𝐶 ) |
| 157 |
156
|
eqcomd |
⊢ ( 𝜑 → 𝐶 = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) |