Step |
Hyp |
Ref |
Expression |
1 |
|
halfcut.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
halfcut.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
halfcut.3 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
4 |
|
halfcut.4 |
⊢ ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) = ( 𝐴 +s 𝐵 ) ) |
5 |
|
halfcut.5 |
⊢ 𝐶 = ( { 𝐴 } |s { 𝐵 } ) |
6 |
1 2 3
|
ssltsn |
⊢ ( 𝜑 → { 𝐴 } <<s { 𝐵 } ) |
7 |
6
|
scutcld |
⊢ ( 𝜑 → ( { 𝐴 } |s { 𝐵 } ) ∈ No ) |
8 |
5 7
|
eqeltrid |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
9 |
|
no2times |
⊢ ( 𝐶 ∈ No → ( 2s ·s 𝐶 ) = ( 𝐶 +s 𝐶 ) ) |
10 |
8 9
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐶 ) = ( 𝐶 +s 𝐶 ) ) |
11 |
5
|
a1i |
⊢ ( 𝜑 → 𝐶 = ( { 𝐴 } |s { 𝐵 } ) ) |
12 |
6 6 11 11
|
addsunif |
⊢ ( 𝜑 → ( 𝐶 +s 𝐶 ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) ) ) |
13 |
|
oveq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 +s 𝐶 ) = ( 𝐴 +s 𝐶 ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) ) |
15 |
14
|
rexsng |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) ) |
16 |
1 15
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) ) |
17 |
16
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } = { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } ) |
18 |
|
df-sn |
⊢ { ( 𝐴 +s 𝐶 ) } = { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } |
19 |
17 18
|
eqtr4di |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } = { ( 𝐴 +s 𝐶 ) } ) |
20 |
|
oveq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐶 +s 𝑦 ) = ( 𝐶 +s 𝐴 ) ) |
21 |
20
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐴 ) ) ) |
22 |
21
|
rexsng |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐴 ) ) ) |
23 |
1 22
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐴 ) ) ) |
24 |
8 1
|
addscomd |
⊢ ( 𝜑 → ( 𝐶 +s 𝐴 ) = ( 𝐴 +s 𝐶 ) ) |
25 |
24
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑥 = ( 𝐶 +s 𝐴 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) ) |
26 |
23 25
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐴 +s 𝐶 ) ) ) |
27 |
26
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } = { 𝑥 ∣ 𝑥 = ( 𝐴 +s 𝐶 ) } ) |
28 |
27 18
|
eqtr4di |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } = { ( 𝐴 +s 𝐶 ) } ) |
29 |
19 28
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = ( { ( 𝐴 +s 𝐶 ) } ∪ { ( 𝐴 +s 𝐶 ) } ) ) |
30 |
|
unidm |
⊢ ( { ( 𝐴 +s 𝐶 ) } ∪ { ( 𝐴 +s 𝐶 ) } ) = { ( 𝐴 +s 𝐶 ) } |
31 |
29 30
|
eqtrdi |
⊢ ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = { ( 𝐴 +s 𝐶 ) } ) |
32 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 +s 𝐶 ) = ( 𝐵 +s 𝐶 ) ) |
33 |
32
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) ) |
34 |
33
|
rexsng |
⊢ ( 𝐵 ∈ No → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) ) |
35 |
2 34
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) ) |
36 |
35
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } = { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } ) |
37 |
|
df-sn |
⊢ { ( 𝐵 +s 𝐶 ) } = { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } |
38 |
36 37
|
eqtr4di |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } = { ( 𝐵 +s 𝐶 ) } ) |
39 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐶 +s 𝑦 ) = ( 𝐶 +s 𝐵 ) ) |
40 |
39
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐵 ) ) ) |
41 |
40
|
rexsng |
⊢ ( 𝐵 ∈ No → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐵 ) ) ) |
42 |
2 41
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐶 +s 𝐵 ) ) ) |
43 |
8 2
|
addscomd |
⊢ ( 𝜑 → ( 𝐶 +s 𝐵 ) = ( 𝐵 +s 𝐶 ) ) |
44 |
43
|
eqeq2d |
⊢ ( 𝜑 → ( 𝑥 = ( 𝐶 +s 𝐵 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) ) |
45 |
42 44
|
bitrd |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) ↔ 𝑥 = ( 𝐵 +s 𝐶 ) ) ) |
46 |
45
|
abbidv |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } = { 𝑥 ∣ 𝑥 = ( 𝐵 +s 𝐶 ) } ) |
47 |
46 37
|
eqtr4di |
⊢ ( 𝜑 → { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } = { ( 𝐵 +s 𝐶 ) } ) |
48 |
38 47
|
uneq12d |
⊢ ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = ( { ( 𝐵 +s 𝐶 ) } ∪ { ( 𝐵 +s 𝐶 ) } ) ) |
49 |
|
unidm |
⊢ ( { ( 𝐵 +s 𝐶 ) } ∪ { ( 𝐵 +s 𝐶 ) } ) = { ( 𝐵 +s 𝐶 ) } |
50 |
48 49
|
eqtrdi |
⊢ ( 𝜑 → ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) = { ( 𝐵 +s 𝐶 ) } ) |
51 |
31 50
|
oveq12d |
⊢ ( 𝜑 → ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) ) = ( { ( 𝐴 +s 𝐶 ) } |s { ( 𝐵 +s 𝐶 ) } ) ) |
52 |
|
2sno |
⊢ 2s ∈ No |
53 |
52
|
a1i |
⊢ ( 𝜑 → 2s ∈ No ) |
54 |
53 1
|
mulscld |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ∈ No ) |
55 |
53 2
|
mulscld |
⊢ ( 𝜑 → ( 2s ·s 𝐵 ) ∈ No ) |
56 |
|
2nns |
⊢ 2s ∈ ℕs |
57 |
|
nnsgt0 |
⊢ ( 2s ∈ ℕs → 0s <s 2s ) |
58 |
56 57
|
mp1i |
⊢ ( 𝜑 → 0s <s 2s ) |
59 |
1 2 53 58
|
sltmul2d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐵 ↔ ( 2s ·s 𝐴 ) <s ( 2s ·s 𝐵 ) ) ) |
60 |
3 59
|
mpbid |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) <s ( 2s ·s 𝐵 ) ) |
61 |
54 55 60
|
ssltsn |
⊢ ( 𝜑 → { ( 2s ·s 𝐴 ) } <<s { ( 2s ·s 𝐵 ) } ) |
62 |
1 8
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐶 ) ∈ No ) |
63 |
|
no2times |
⊢ ( 𝐴 ∈ No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
64 |
1 63
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
65 |
|
slerflex |
⊢ ( 𝐴 ∈ No → 𝐴 ≤s 𝐴 ) |
66 |
1 65
|
syl |
⊢ ( 𝜑 → 𝐴 ≤s 𝐴 ) |
67 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴 ) ) |
68 |
67
|
rexsng |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴 ) ) |
69 |
1 68
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ↔ 𝐴 ≤s 𝐴 ) ) |
70 |
66 69
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ) |
71 |
70
|
orcd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ∨ ∃ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑦 ≤s 𝐶 ) ) |
72 |
|
lltropt |
⊢ ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) |
73 |
72
|
a1i |
⊢ ( 𝜑 → ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ) |
74 |
|
lrcut |
⊢ ( 𝐴 ∈ No → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
75 |
1 74
|
syl |
⊢ ( 𝜑 → ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) = 𝐴 ) |
76 |
75
|
eqcomd |
⊢ ( 𝜑 → 𝐴 = ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) ) |
77 |
|
sltrec |
⊢ ( ( ( ( L ‘ 𝐴 ) <<s ( R ‘ 𝐴 ) ∧ { 𝐴 } <<s { 𝐵 } ) ∧ ( 𝐴 = ( ( L ‘ 𝐴 ) |s ( R ‘ 𝐴 ) ) ∧ 𝐶 = ( { 𝐴 } |s { 𝐵 } ) ) ) → ( 𝐴 <s 𝐶 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ∨ ∃ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑦 ≤s 𝐶 ) ) ) |
78 |
73 6 76 11 77
|
syl22anc |
⊢ ( 𝜑 → ( 𝐴 <s 𝐶 ↔ ( ∃ 𝑥 ∈ { 𝐴 } 𝐴 ≤s 𝑥 ∨ ∃ 𝑦 ∈ ( R ‘ 𝐴 ) 𝑦 ≤s 𝐶 ) ) ) |
79 |
71 78
|
mpbird |
⊢ ( 𝜑 → 𝐴 <s 𝐶 ) |
80 |
1 8 1
|
sltadd2d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐶 ↔ ( 𝐴 +s 𝐴 ) <s ( 𝐴 +s 𝐶 ) ) ) |
81 |
79 80
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 +s 𝐴 ) <s ( 𝐴 +s 𝐶 ) ) |
82 |
64 81
|
eqbrtrd |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) <s ( 𝐴 +s 𝐶 ) ) |
83 |
54 62 82
|
sltled |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) |
84 |
|
ovex |
⊢ ( 𝐴 +s 𝐶 ) ∈ V |
85 |
|
breq2 |
⊢ ( 𝑦 = ( 𝐴 +s 𝐶 ) → ( 𝑥 ≤s 𝑦 ↔ 𝑥 ≤s ( 𝐴 +s 𝐶 ) ) ) |
86 |
84 85
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 ↔ 𝑥 ≤s ( 𝐴 +s 𝐶 ) ) |
87 |
86
|
ralbii |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 ↔ ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s ( 𝐴 +s 𝐶 ) ) |
88 |
|
ovex |
⊢ ( 2s ·s 𝐴 ) ∈ V |
89 |
|
breq1 |
⊢ ( 𝑥 = ( 2s ·s 𝐴 ) → ( 𝑥 ≤s ( 𝐴 +s 𝐶 ) ↔ ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) ) |
90 |
88 89
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s ( 𝐴 +s 𝐶 ) ↔ ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) |
91 |
87 90
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 ↔ ( 2s ·s 𝐴 ) ≤s ( 𝐴 +s 𝐶 ) ) |
92 |
83 91
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 𝐴 +s 𝐶 ) } 𝑥 ≤s 𝑦 ) |
93 |
2 8
|
addscld |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) ∈ No ) |
94 |
|
slerflex |
⊢ ( 𝐵 ∈ No → 𝐵 ≤s 𝐵 ) |
95 |
2 94
|
syl |
⊢ ( 𝜑 → 𝐵 ≤s 𝐵 ) |
96 |
|
breq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵 ) ) |
97 |
96
|
rexsng |
⊢ ( 𝐵 ∈ No → ( ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵 ) ) |
98 |
2 97
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ↔ 𝐵 ≤s 𝐵 ) ) |
99 |
95 98
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ) |
100 |
99
|
olcd |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ ( L ‘ 𝐵 ) 𝐶 ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ) ) |
101 |
|
lltropt |
⊢ ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) |
102 |
101
|
a1i |
⊢ ( 𝜑 → ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) ) |
103 |
|
lrcut |
⊢ ( 𝐵 ∈ No → ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) = 𝐵 ) |
104 |
2 103
|
syl |
⊢ ( 𝜑 → ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) = 𝐵 ) |
105 |
104
|
eqcomd |
⊢ ( 𝜑 → 𝐵 = ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) ) |
106 |
|
sltrec |
⊢ ( ( ( { 𝐴 } <<s { 𝐵 } ∧ ( L ‘ 𝐵 ) <<s ( R ‘ 𝐵 ) ) ∧ ( 𝐶 = ( { 𝐴 } |s { 𝐵 } ) ∧ 𝐵 = ( ( L ‘ 𝐵 ) |s ( R ‘ 𝐵 ) ) ) ) → ( 𝐶 <s 𝐵 ↔ ( ∃ 𝑥 ∈ ( L ‘ 𝐵 ) 𝐶 ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ) ) ) |
107 |
6 102 11 105 106
|
syl22anc |
⊢ ( 𝜑 → ( 𝐶 <s 𝐵 ↔ ( ∃ 𝑥 ∈ ( L ‘ 𝐵 ) 𝐶 ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 𝐵 } 𝑦 ≤s 𝐵 ) ) ) |
108 |
100 107
|
mpbird |
⊢ ( 𝜑 → 𝐶 <s 𝐵 ) |
109 |
8 2 2
|
sltadd2d |
⊢ ( 𝜑 → ( 𝐶 <s 𝐵 ↔ ( 𝐵 +s 𝐶 ) <s ( 𝐵 +s 𝐵 ) ) ) |
110 |
108 109
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) <s ( 𝐵 +s 𝐵 ) ) |
111 |
|
no2times |
⊢ ( 𝐵 ∈ No → ( 2s ·s 𝐵 ) = ( 𝐵 +s 𝐵 ) ) |
112 |
2 111
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐵 ) = ( 𝐵 +s 𝐵 ) ) |
113 |
110 112
|
breqtrrd |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) <s ( 2s ·s 𝐵 ) ) |
114 |
93 55 113
|
sltled |
⊢ ( 𝜑 → ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) ) |
115 |
|
ovex |
⊢ ( 𝐵 +s 𝐶 ) ∈ V |
116 |
|
breq1 |
⊢ ( 𝑦 = ( 𝐵 +s 𝐶 ) → ( 𝑦 ≤s 𝑥 ↔ ( 𝐵 +s 𝐶 ) ≤s 𝑥 ) ) |
117 |
115 116
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 ↔ ( 𝐵 +s 𝐶 ) ≤s 𝑥 ) |
118 |
117
|
ralbii |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐵 ) } ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 ↔ ∀ 𝑥 ∈ { ( 2s ·s 𝐵 ) } ( 𝐵 +s 𝐶 ) ≤s 𝑥 ) |
119 |
|
ovex |
⊢ ( 2s ·s 𝐵 ) ∈ V |
120 |
|
breq2 |
⊢ ( 𝑥 = ( 2s ·s 𝐵 ) → ( ( 𝐵 +s 𝐶 ) ≤s 𝑥 ↔ ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) ) ) |
121 |
119 120
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐵 ) } ( 𝐵 +s 𝐶 ) ≤s 𝑥 ↔ ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) ) |
122 |
118 121
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐵 ) } ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 ↔ ( 𝐵 +s 𝐶 ) ≤s ( 2s ·s 𝐵 ) ) |
123 |
114 122
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { ( 2s ·s 𝐵 ) } ∃ 𝑦 ∈ { ( 𝐵 +s 𝐶 ) } 𝑦 ≤s 𝑥 ) |
124 |
1 2
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) ∈ No ) |
125 |
8 2 1
|
sltadd2d |
⊢ ( 𝜑 → ( 𝐶 <s 𝐵 ↔ ( 𝐴 +s 𝐶 ) <s ( 𝐴 +s 𝐵 ) ) ) |
126 |
108 125
|
mpbid |
⊢ ( 𝜑 → ( 𝐴 +s 𝐶 ) <s ( 𝐴 +s 𝐵 ) ) |
127 |
62 124 126
|
ssltsn |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐶 ) } <<s { ( 𝐴 +s 𝐵 ) } ) |
128 |
4
|
sneqd |
⊢ ( 𝜑 → { ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) } = { ( 𝐴 +s 𝐵 ) } ) |
129 |
127 128
|
breqtrrd |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐶 ) } <<s { ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) } ) |
130 |
1 2
|
addscomd |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) = ( 𝐵 +s 𝐴 ) ) |
131 |
1 8 2
|
sltadd2d |
⊢ ( 𝜑 → ( 𝐴 <s 𝐶 ↔ ( 𝐵 +s 𝐴 ) <s ( 𝐵 +s 𝐶 ) ) ) |
132 |
79 131
|
mpbid |
⊢ ( 𝜑 → ( 𝐵 +s 𝐴 ) <s ( 𝐵 +s 𝐶 ) ) |
133 |
130 132
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝐴 +s 𝐵 ) <s ( 𝐵 +s 𝐶 ) ) |
134 |
124 93 133
|
ssltsn |
⊢ ( 𝜑 → { ( 𝐴 +s 𝐵 ) } <<s { ( 𝐵 +s 𝐶 ) } ) |
135 |
128 134
|
eqbrtrd |
⊢ ( 𝜑 → { ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) } <<s { ( 𝐵 +s 𝐶 ) } ) |
136 |
61 92 123 129 135
|
cofcut1d |
⊢ ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) = ( { ( 𝐴 +s 𝐶 ) } |s { ( 𝐵 +s 𝐶 ) } ) ) |
137 |
51 136 4
|
3eqtr2d |
⊢ ( 𝜑 → ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐴 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝑦 +s 𝐶 ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 𝐵 } 𝑥 = ( 𝐶 +s 𝑦 ) } ) ) = ( 𝐴 +s 𝐵 ) ) |
138 |
10 12 137
|
3eqtrd |
⊢ ( 𝜑 → ( 2s ·s 𝐶 ) = ( 𝐴 +s 𝐵 ) ) |
139 |
|
2ne0s |
⊢ 2s ≠ 0s |
140 |
139
|
a1i |
⊢ ( 𝜑 → 2s ≠ 0s ) |
141 |
124 8 53 140
|
divsmuld |
⊢ ( 𝜑 → ( ( ( 𝐴 +s 𝐵 ) /su 2s ) = 𝐶 ↔ ( 2s ·s 𝐶 ) = ( 𝐴 +s 𝐵 ) ) ) |
142 |
138 141
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐵 ) /su 2s ) = 𝐶 ) |
143 |
142
|
eqcomd |
⊢ ( 𝜑 → 𝐶 = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) |