Step |
Hyp |
Ref |
Expression |
1 |
|
halfcut.1 |
|- ( ph -> A e. No ) |
2 |
|
halfcut.2 |
|- ( ph -> B e. No ) |
3 |
|
halfcut.3 |
|- ( ph -> A |
4 |
|
halfcut.4 |
|- ( ph -> ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) = ( A +s B ) ) |
5 |
|
halfcut.5 |
|- C = ( { A } |s { B } ) |
6 |
1 2 3
|
ssltsn |
|- ( ph -> { A } < |
7 |
6
|
scutcld |
|- ( ph -> ( { A } |s { B } ) e. No ) |
8 |
5 7
|
eqeltrid |
|- ( ph -> C e. No ) |
9 |
|
no2times |
|- ( C e. No -> ( 2s x.s C ) = ( C +s C ) ) |
10 |
8 9
|
syl |
|- ( ph -> ( 2s x.s C ) = ( C +s C ) ) |
11 |
5
|
a1i |
|- ( ph -> C = ( { A } |s { B } ) ) |
12 |
6 6 11 11
|
addsunif |
|- ( ph -> ( C +s C ) = ( ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) |s ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) ) ) |
13 |
|
oveq1 |
|- ( y = A -> ( y +s C ) = ( A +s C ) ) |
14 |
13
|
eqeq2d |
|- ( y = A -> ( x = ( y +s C ) <-> x = ( A +s C ) ) ) |
15 |
14
|
rexsng |
|- ( A e. No -> ( E. y e. { A } x = ( y +s C ) <-> x = ( A +s C ) ) ) |
16 |
1 15
|
syl |
|- ( ph -> ( E. y e. { A } x = ( y +s C ) <-> x = ( A +s C ) ) ) |
17 |
16
|
abbidv |
|- ( ph -> { x | E. y e. { A } x = ( y +s C ) } = { x | x = ( A +s C ) } ) |
18 |
|
df-sn |
|- { ( A +s C ) } = { x | x = ( A +s C ) } |
19 |
17 18
|
eqtr4di |
|- ( ph -> { x | E. y e. { A } x = ( y +s C ) } = { ( A +s C ) } ) |
20 |
|
oveq2 |
|- ( y = A -> ( C +s y ) = ( C +s A ) ) |
21 |
20
|
eqeq2d |
|- ( y = A -> ( x = ( C +s y ) <-> x = ( C +s A ) ) ) |
22 |
21
|
rexsng |
|- ( A e. No -> ( E. y e. { A } x = ( C +s y ) <-> x = ( C +s A ) ) ) |
23 |
1 22
|
syl |
|- ( ph -> ( E. y e. { A } x = ( C +s y ) <-> x = ( C +s A ) ) ) |
24 |
8 1
|
addscomd |
|- ( ph -> ( C +s A ) = ( A +s C ) ) |
25 |
24
|
eqeq2d |
|- ( ph -> ( x = ( C +s A ) <-> x = ( A +s C ) ) ) |
26 |
23 25
|
bitrd |
|- ( ph -> ( E. y e. { A } x = ( C +s y ) <-> x = ( A +s C ) ) ) |
27 |
26
|
abbidv |
|- ( ph -> { x | E. y e. { A } x = ( C +s y ) } = { x | x = ( A +s C ) } ) |
28 |
27 18
|
eqtr4di |
|- ( ph -> { x | E. y e. { A } x = ( C +s y ) } = { ( A +s C ) } ) |
29 |
19 28
|
uneq12d |
|- ( ph -> ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) = ( { ( A +s C ) } u. { ( A +s C ) } ) ) |
30 |
|
unidm |
|- ( { ( A +s C ) } u. { ( A +s C ) } ) = { ( A +s C ) } |
31 |
29 30
|
eqtrdi |
|- ( ph -> ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) = { ( A +s C ) } ) |
32 |
|
oveq1 |
|- ( y = B -> ( y +s C ) = ( B +s C ) ) |
33 |
32
|
eqeq2d |
|- ( y = B -> ( x = ( y +s C ) <-> x = ( B +s C ) ) ) |
34 |
33
|
rexsng |
|- ( B e. No -> ( E. y e. { B } x = ( y +s C ) <-> x = ( B +s C ) ) ) |
35 |
2 34
|
syl |
|- ( ph -> ( E. y e. { B } x = ( y +s C ) <-> x = ( B +s C ) ) ) |
36 |
35
|
abbidv |
|- ( ph -> { x | E. y e. { B } x = ( y +s C ) } = { x | x = ( B +s C ) } ) |
37 |
|
df-sn |
|- { ( B +s C ) } = { x | x = ( B +s C ) } |
38 |
36 37
|
eqtr4di |
|- ( ph -> { x | E. y e. { B } x = ( y +s C ) } = { ( B +s C ) } ) |
39 |
|
oveq2 |
|- ( y = B -> ( C +s y ) = ( C +s B ) ) |
40 |
39
|
eqeq2d |
|- ( y = B -> ( x = ( C +s y ) <-> x = ( C +s B ) ) ) |
41 |
40
|
rexsng |
|- ( B e. No -> ( E. y e. { B } x = ( C +s y ) <-> x = ( C +s B ) ) ) |
42 |
2 41
|
syl |
|- ( ph -> ( E. y e. { B } x = ( C +s y ) <-> x = ( C +s B ) ) ) |
43 |
8 2
|
addscomd |
|- ( ph -> ( C +s B ) = ( B +s C ) ) |
44 |
43
|
eqeq2d |
|- ( ph -> ( x = ( C +s B ) <-> x = ( B +s C ) ) ) |
45 |
42 44
|
bitrd |
|- ( ph -> ( E. y e. { B } x = ( C +s y ) <-> x = ( B +s C ) ) ) |
46 |
45
|
abbidv |
|- ( ph -> { x | E. y e. { B } x = ( C +s y ) } = { x | x = ( B +s C ) } ) |
47 |
46 37
|
eqtr4di |
|- ( ph -> { x | E. y e. { B } x = ( C +s y ) } = { ( B +s C ) } ) |
48 |
38 47
|
uneq12d |
|- ( ph -> ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) = ( { ( B +s C ) } u. { ( B +s C ) } ) ) |
49 |
|
unidm |
|- ( { ( B +s C ) } u. { ( B +s C ) } ) = { ( B +s C ) } |
50 |
48 49
|
eqtrdi |
|- ( ph -> ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) = { ( B +s C ) } ) |
51 |
31 50
|
oveq12d |
|- ( ph -> ( ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) |s ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) ) = ( { ( A +s C ) } |s { ( B +s C ) } ) ) |
52 |
|
2sno |
|- 2s e. No |
53 |
52
|
a1i |
|- ( ph -> 2s e. No ) |
54 |
53 1
|
mulscld |
|- ( ph -> ( 2s x.s A ) e. No ) |
55 |
53 2
|
mulscld |
|- ( ph -> ( 2s x.s B ) e. No ) |
56 |
|
2nns |
|- 2s e. NN_s |
57 |
|
nnsgt0 |
|- ( 2s e. NN_s -> 0s |
58 |
56 57
|
mp1i |
|- ( ph -> 0s |
59 |
1 2 53 58
|
sltmul2d |
|- ( ph -> ( A ( 2s x.s A ) |
60 |
3 59
|
mpbid |
|- ( ph -> ( 2s x.s A ) |
61 |
54 55 60
|
ssltsn |
|- ( ph -> { ( 2s x.s A ) } < |
62 |
1 8
|
addscld |
|- ( ph -> ( A +s C ) e. No ) |
63 |
|
no2times |
|- ( A e. No -> ( 2s x.s A ) = ( A +s A ) ) |
64 |
1 63
|
syl |
|- ( ph -> ( 2s x.s A ) = ( A +s A ) ) |
65 |
|
slerflex |
|- ( A e. No -> A <_s A ) |
66 |
1 65
|
syl |
|- ( ph -> A <_s A ) |
67 |
|
breq2 |
|- ( x = A -> ( A <_s x <-> A <_s A ) ) |
68 |
67
|
rexsng |
|- ( A e. No -> ( E. x e. { A } A <_s x <-> A <_s A ) ) |
69 |
1 68
|
syl |
|- ( ph -> ( E. x e. { A } A <_s x <-> A <_s A ) ) |
70 |
66 69
|
mpbird |
|- ( ph -> E. x e. { A } A <_s x ) |
71 |
70
|
orcd |
|- ( ph -> ( E. x e. { A } A <_s x \/ E. y e. ( _Right ` A ) y <_s C ) ) |
72 |
|
lltropt |
|- ( _Left ` A ) < |
73 |
72
|
a1i |
|- ( ph -> ( _Left ` A ) < |
74 |
|
lrcut |
|- ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
75 |
1 74
|
syl |
|- ( ph -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
76 |
75
|
eqcomd |
|- ( ph -> A = ( ( _Left ` A ) |s ( _Right ` A ) ) ) |
77 |
|
sltrec |
|- ( ( ( ( _Left ` A ) < ( A ( E. x e. { A } A <_s x \/ E. y e. ( _Right ` A ) y <_s C ) ) ) |
78 |
73 6 76 11 77
|
syl22anc |
|- ( ph -> ( A ( E. x e. { A } A <_s x \/ E. y e. ( _Right ` A ) y <_s C ) ) ) |
79 |
71 78
|
mpbird |
|- ( ph -> A |
80 |
1 8 1
|
sltadd2d |
|- ( ph -> ( A ( A +s A ) |
81 |
79 80
|
mpbid |
|- ( ph -> ( A +s A ) |
82 |
64 81
|
eqbrtrd |
|- ( ph -> ( 2s x.s A ) |
83 |
54 62 82
|
sltled |
|- ( ph -> ( 2s x.s A ) <_s ( A +s C ) ) |
84 |
|
ovex |
|- ( A +s C ) e. _V |
85 |
|
breq2 |
|- ( y = ( A +s C ) -> ( x <_s y <-> x <_s ( A +s C ) ) ) |
86 |
84 85
|
rexsn |
|- ( E. y e. { ( A +s C ) } x <_s y <-> x <_s ( A +s C ) ) |
87 |
86
|
ralbii |
|- ( A. x e. { ( 2s x.s A ) } E. y e. { ( A +s C ) } x <_s y <-> A. x e. { ( 2s x.s A ) } x <_s ( A +s C ) ) |
88 |
|
ovex |
|- ( 2s x.s A ) e. _V |
89 |
|
breq1 |
|- ( x = ( 2s x.s A ) -> ( x <_s ( A +s C ) <-> ( 2s x.s A ) <_s ( A +s C ) ) ) |
90 |
88 89
|
ralsn |
|- ( A. x e. { ( 2s x.s A ) } x <_s ( A +s C ) <-> ( 2s x.s A ) <_s ( A +s C ) ) |
91 |
87 90
|
bitri |
|- ( A. x e. { ( 2s x.s A ) } E. y e. { ( A +s C ) } x <_s y <-> ( 2s x.s A ) <_s ( A +s C ) ) |
92 |
83 91
|
sylibr |
|- ( ph -> A. x e. { ( 2s x.s A ) } E. y e. { ( A +s C ) } x <_s y ) |
93 |
2 8
|
addscld |
|- ( ph -> ( B +s C ) e. No ) |
94 |
|
slerflex |
|- ( B e. No -> B <_s B ) |
95 |
2 94
|
syl |
|- ( ph -> B <_s B ) |
96 |
|
breq1 |
|- ( y = B -> ( y <_s B <-> B <_s B ) ) |
97 |
96
|
rexsng |
|- ( B e. No -> ( E. y e. { B } y <_s B <-> B <_s B ) ) |
98 |
2 97
|
syl |
|- ( ph -> ( E. y e. { B } y <_s B <-> B <_s B ) ) |
99 |
95 98
|
mpbird |
|- ( ph -> E. y e. { B } y <_s B ) |
100 |
99
|
olcd |
|- ( ph -> ( E. x e. ( _Left ` B ) C <_s x \/ E. y e. { B } y <_s B ) ) |
101 |
|
lltropt |
|- ( _Left ` B ) < |
102 |
101
|
a1i |
|- ( ph -> ( _Left ` B ) < |
103 |
|
lrcut |
|- ( B e. No -> ( ( _Left ` B ) |s ( _Right ` B ) ) = B ) |
104 |
2 103
|
syl |
|- ( ph -> ( ( _Left ` B ) |s ( _Right ` B ) ) = B ) |
105 |
104
|
eqcomd |
|- ( ph -> B = ( ( _Left ` B ) |s ( _Right ` B ) ) ) |
106 |
|
sltrec |
|- ( ( ( { A } < ( C ( E. x e. ( _Left ` B ) C <_s x \/ E. y e. { B } y <_s B ) ) ) |
107 |
6 102 11 105 106
|
syl22anc |
|- ( ph -> ( C ( E. x e. ( _Left ` B ) C <_s x \/ E. y e. { B } y <_s B ) ) ) |
108 |
100 107
|
mpbird |
|- ( ph -> C |
109 |
8 2 2
|
sltadd2d |
|- ( ph -> ( C ( B +s C ) |
110 |
108 109
|
mpbid |
|- ( ph -> ( B +s C ) |
111 |
|
no2times |
|- ( B e. No -> ( 2s x.s B ) = ( B +s B ) ) |
112 |
2 111
|
syl |
|- ( ph -> ( 2s x.s B ) = ( B +s B ) ) |
113 |
110 112
|
breqtrrd |
|- ( ph -> ( B +s C ) |
114 |
93 55 113
|
sltled |
|- ( ph -> ( B +s C ) <_s ( 2s x.s B ) ) |
115 |
|
ovex |
|- ( B +s C ) e. _V |
116 |
|
breq1 |
|- ( y = ( B +s C ) -> ( y <_s x <-> ( B +s C ) <_s x ) ) |
117 |
115 116
|
rexsn |
|- ( E. y e. { ( B +s C ) } y <_s x <-> ( B +s C ) <_s x ) |
118 |
117
|
ralbii |
|- ( A. x e. { ( 2s x.s B ) } E. y e. { ( B +s C ) } y <_s x <-> A. x e. { ( 2s x.s B ) } ( B +s C ) <_s x ) |
119 |
|
ovex |
|- ( 2s x.s B ) e. _V |
120 |
|
breq2 |
|- ( x = ( 2s x.s B ) -> ( ( B +s C ) <_s x <-> ( B +s C ) <_s ( 2s x.s B ) ) ) |
121 |
119 120
|
ralsn |
|- ( A. x e. { ( 2s x.s B ) } ( B +s C ) <_s x <-> ( B +s C ) <_s ( 2s x.s B ) ) |
122 |
118 121
|
bitri |
|- ( A. x e. { ( 2s x.s B ) } E. y e. { ( B +s C ) } y <_s x <-> ( B +s C ) <_s ( 2s x.s B ) ) |
123 |
114 122
|
sylibr |
|- ( ph -> A. x e. { ( 2s x.s B ) } E. y e. { ( B +s C ) } y <_s x ) |
124 |
1 2
|
addscld |
|- ( ph -> ( A +s B ) e. No ) |
125 |
8 2 1
|
sltadd2d |
|- ( ph -> ( C ( A +s C ) |
126 |
108 125
|
mpbid |
|- ( ph -> ( A +s C ) |
127 |
62 124 126
|
ssltsn |
|- ( ph -> { ( A +s C ) } < |
128 |
4
|
sneqd |
|- ( ph -> { ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) } = { ( A +s B ) } ) |
129 |
127 128
|
breqtrrd |
|- ( ph -> { ( A +s C ) } < |
130 |
1 2
|
addscomd |
|- ( ph -> ( A +s B ) = ( B +s A ) ) |
131 |
1 8 2
|
sltadd2d |
|- ( ph -> ( A ( B +s A ) |
132 |
79 131
|
mpbid |
|- ( ph -> ( B +s A ) |
133 |
130 132
|
eqbrtrd |
|- ( ph -> ( A +s B ) |
134 |
124 93 133
|
ssltsn |
|- ( ph -> { ( A +s B ) } < |
135 |
128 134
|
eqbrtrd |
|- ( ph -> { ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) } < |
136 |
61 92 123 129 135
|
cofcut1d |
|- ( ph -> ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) = ( { ( A +s C ) } |s { ( B +s C ) } ) ) |
137 |
51 136 4
|
3eqtr2d |
|- ( ph -> ( ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) |s ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) ) = ( A +s B ) ) |
138 |
10 12 137
|
3eqtrd |
|- ( ph -> ( 2s x.s C ) = ( A +s B ) ) |
139 |
|
2ne0s |
|- 2s =/= 0s |
140 |
139
|
a1i |
|- ( ph -> 2s =/= 0s ) |
141 |
124 8 53 140
|
divsmuld |
|- ( ph -> ( ( ( A +s B ) /su 2s ) = C <-> ( 2s x.s C ) = ( A +s B ) ) ) |
142 |
138 141
|
mpbird |
|- ( ph -> ( ( A +s B ) /su 2s ) = C ) |
143 |
142
|
eqcomd |
|- ( ph -> C = ( ( A +s B ) /su 2s ) ) |