| Step | Hyp | Ref | Expression | 
						
							| 1 |  | halfcut.1 |  |-  ( ph -> A e. No ) | 
						
							| 2 |  | halfcut.2 |  |-  ( ph -> B e. No ) | 
						
							| 3 |  | halfcut.3 |  |-  ( ph -> A  | 
						
							| 4 |  | halfcut.4 |  |-  ( ph -> ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) = ( A +s B ) ) | 
						
							| 5 |  | halfcut.5 |  |-  C = ( { A } |s { B } ) | 
						
							| 6 | 1 2 3 | ssltsn |  |-  ( ph -> { A } < | 
						
							| 7 | 6 | scutcld |  |-  ( ph -> ( { A } |s { B } ) e. No ) | 
						
							| 8 | 5 7 | eqeltrid |  |-  ( ph -> C e. No ) | 
						
							| 9 |  | no2times |  |-  ( C e. No -> ( 2s x.s C ) = ( C +s C ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( 2s x.s C ) = ( C +s C ) ) | 
						
							| 11 | 5 | a1i |  |-  ( ph -> C = ( { A } |s { B } ) ) | 
						
							| 12 | 6 6 11 11 | addsunif |  |-  ( ph -> ( C +s C ) = ( ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) |s ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) ) ) | 
						
							| 13 |  | oveq1 |  |-  ( y = A -> ( y +s C ) = ( A +s C ) ) | 
						
							| 14 | 13 | eqeq2d |  |-  ( y = A -> ( x = ( y +s C ) <-> x = ( A +s C ) ) ) | 
						
							| 15 | 14 | rexsng |  |-  ( A e. No -> ( E. y e. { A } x = ( y +s C ) <-> x = ( A +s C ) ) ) | 
						
							| 16 | 1 15 | syl |  |-  ( ph -> ( E. y e. { A } x = ( y +s C ) <-> x = ( A +s C ) ) ) | 
						
							| 17 | 16 | abbidv |  |-  ( ph -> { x | E. y e. { A } x = ( y +s C ) } = { x | x = ( A +s C ) } ) | 
						
							| 18 |  | df-sn |  |-  { ( A +s C ) } = { x | x = ( A +s C ) } | 
						
							| 19 | 17 18 | eqtr4di |  |-  ( ph -> { x | E. y e. { A } x = ( y +s C ) } = { ( A +s C ) } ) | 
						
							| 20 |  | oveq2 |  |-  ( y = A -> ( C +s y ) = ( C +s A ) ) | 
						
							| 21 | 20 | eqeq2d |  |-  ( y = A -> ( x = ( C +s y ) <-> x = ( C +s A ) ) ) | 
						
							| 22 | 21 | rexsng |  |-  ( A e. No -> ( E. y e. { A } x = ( C +s y ) <-> x = ( C +s A ) ) ) | 
						
							| 23 | 1 22 | syl |  |-  ( ph -> ( E. y e. { A } x = ( C +s y ) <-> x = ( C +s A ) ) ) | 
						
							| 24 | 8 1 | addscomd |  |-  ( ph -> ( C +s A ) = ( A +s C ) ) | 
						
							| 25 | 24 | eqeq2d |  |-  ( ph -> ( x = ( C +s A ) <-> x = ( A +s C ) ) ) | 
						
							| 26 | 23 25 | bitrd |  |-  ( ph -> ( E. y e. { A } x = ( C +s y ) <-> x = ( A +s C ) ) ) | 
						
							| 27 | 26 | abbidv |  |-  ( ph -> { x | E. y e. { A } x = ( C +s y ) } = { x | x = ( A +s C ) } ) | 
						
							| 28 | 27 18 | eqtr4di |  |-  ( ph -> { x | E. y e. { A } x = ( C +s y ) } = { ( A +s C ) } ) | 
						
							| 29 | 19 28 | uneq12d |  |-  ( ph -> ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) = ( { ( A +s C ) } u. { ( A +s C ) } ) ) | 
						
							| 30 |  | unidm |  |-  ( { ( A +s C ) } u. { ( A +s C ) } ) = { ( A +s C ) } | 
						
							| 31 | 29 30 | eqtrdi |  |-  ( ph -> ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) = { ( A +s C ) } ) | 
						
							| 32 |  | oveq1 |  |-  ( y = B -> ( y +s C ) = ( B +s C ) ) | 
						
							| 33 | 32 | eqeq2d |  |-  ( y = B -> ( x = ( y +s C ) <-> x = ( B +s C ) ) ) | 
						
							| 34 | 33 | rexsng |  |-  ( B e. No -> ( E. y e. { B } x = ( y +s C ) <-> x = ( B +s C ) ) ) | 
						
							| 35 | 2 34 | syl |  |-  ( ph -> ( E. y e. { B } x = ( y +s C ) <-> x = ( B +s C ) ) ) | 
						
							| 36 | 35 | abbidv |  |-  ( ph -> { x | E. y e. { B } x = ( y +s C ) } = { x | x = ( B +s C ) } ) | 
						
							| 37 |  | df-sn |  |-  { ( B +s C ) } = { x | x = ( B +s C ) } | 
						
							| 38 | 36 37 | eqtr4di |  |-  ( ph -> { x | E. y e. { B } x = ( y +s C ) } = { ( B +s C ) } ) | 
						
							| 39 |  | oveq2 |  |-  ( y = B -> ( C +s y ) = ( C +s B ) ) | 
						
							| 40 | 39 | eqeq2d |  |-  ( y = B -> ( x = ( C +s y ) <-> x = ( C +s B ) ) ) | 
						
							| 41 | 40 | rexsng |  |-  ( B e. No -> ( E. y e. { B } x = ( C +s y ) <-> x = ( C +s B ) ) ) | 
						
							| 42 | 2 41 | syl |  |-  ( ph -> ( E. y e. { B } x = ( C +s y ) <-> x = ( C +s B ) ) ) | 
						
							| 43 | 8 2 | addscomd |  |-  ( ph -> ( C +s B ) = ( B +s C ) ) | 
						
							| 44 | 43 | eqeq2d |  |-  ( ph -> ( x = ( C +s B ) <-> x = ( B +s C ) ) ) | 
						
							| 45 | 42 44 | bitrd |  |-  ( ph -> ( E. y e. { B } x = ( C +s y ) <-> x = ( B +s C ) ) ) | 
						
							| 46 | 45 | abbidv |  |-  ( ph -> { x | E. y e. { B } x = ( C +s y ) } = { x | x = ( B +s C ) } ) | 
						
							| 47 | 46 37 | eqtr4di |  |-  ( ph -> { x | E. y e. { B } x = ( C +s y ) } = { ( B +s C ) } ) | 
						
							| 48 | 38 47 | uneq12d |  |-  ( ph -> ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) = ( { ( B +s C ) } u. { ( B +s C ) } ) ) | 
						
							| 49 |  | unidm |  |-  ( { ( B +s C ) } u. { ( B +s C ) } ) = { ( B +s C ) } | 
						
							| 50 | 48 49 | eqtrdi |  |-  ( ph -> ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) = { ( B +s C ) } ) | 
						
							| 51 | 31 50 | oveq12d |  |-  ( ph -> ( ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) |s ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) ) = ( { ( A +s C ) } |s { ( B +s C ) } ) ) | 
						
							| 52 |  | 2sno |  |-  2s e. No | 
						
							| 53 | 52 | a1i |  |-  ( ph -> 2s e. No ) | 
						
							| 54 | 53 1 | mulscld |  |-  ( ph -> ( 2s x.s A ) e. No ) | 
						
							| 55 | 53 2 | mulscld |  |-  ( ph -> ( 2s x.s B ) e. No ) | 
						
							| 56 |  | 2nns |  |-  2s e. NN_s | 
						
							| 57 |  | nnsgt0 |  |-  ( 2s e. NN_s -> 0s  | 
						
							| 58 | 56 57 | mp1i |  |-  ( ph -> 0s  | 
						
							| 59 | 1 2 53 58 | sltmul2d |  |-  ( ph -> ( A  ( 2s x.s A )  | 
						
							| 60 | 3 59 | mpbid |  |-  ( ph -> ( 2s x.s A )  | 
						
							| 61 | 54 55 60 | ssltsn |  |-  ( ph -> { ( 2s x.s A ) } < | 
						
							| 62 | 1 8 | addscld |  |-  ( ph -> ( A +s C ) e. No ) | 
						
							| 63 |  | no2times |  |-  ( A e. No -> ( 2s x.s A ) = ( A +s A ) ) | 
						
							| 64 | 1 63 | syl |  |-  ( ph -> ( 2s x.s A ) = ( A +s A ) ) | 
						
							| 65 |  | slerflex |  |-  ( A e. No -> A <_s A ) | 
						
							| 66 | 1 65 | syl |  |-  ( ph -> A <_s A ) | 
						
							| 67 |  | breq2 |  |-  ( x = A -> ( A <_s x <-> A <_s A ) ) | 
						
							| 68 | 67 | rexsng |  |-  ( A e. No -> ( E. x e. { A } A <_s x <-> A <_s A ) ) | 
						
							| 69 | 1 68 | syl |  |-  ( ph -> ( E. x e. { A } A <_s x <-> A <_s A ) ) | 
						
							| 70 | 66 69 | mpbird |  |-  ( ph -> E. x e. { A } A <_s x ) | 
						
							| 71 | 70 | orcd |  |-  ( ph -> ( E. x e. { A } A <_s x \/ E. y e. ( _Right ` A ) y <_s C ) ) | 
						
							| 72 |  | lltropt |  |-  ( _Left ` A ) < | 
						
							| 73 | 72 | a1i |  |-  ( ph -> ( _Left ` A ) < | 
						
							| 74 |  | lrcut |  |-  ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) | 
						
							| 75 | 1 74 | syl |  |-  ( ph -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) | 
						
							| 76 | 75 | eqcomd |  |-  ( ph -> A = ( ( _Left ` A ) |s ( _Right ` A ) ) ) | 
						
							| 77 |  | sltrec |  |-  ( ( ( ( _Left ` A ) < ( A  ( E. x e. { A } A <_s x \/ E. y e. ( _Right ` A ) y <_s C ) ) ) | 
						
							| 78 | 73 6 76 11 77 | syl22anc |  |-  ( ph -> ( A  ( E. x e. { A } A <_s x \/ E. y e. ( _Right ` A ) y <_s C ) ) ) | 
						
							| 79 | 71 78 | mpbird |  |-  ( ph -> A  | 
						
							| 80 | 1 8 1 | sltadd2d |  |-  ( ph -> ( A  ( A +s A )  | 
						
							| 81 | 79 80 | mpbid |  |-  ( ph -> ( A +s A )  | 
						
							| 82 | 64 81 | eqbrtrd |  |-  ( ph -> ( 2s x.s A )  | 
						
							| 83 | 54 62 82 | sltled |  |-  ( ph -> ( 2s x.s A ) <_s ( A +s C ) ) | 
						
							| 84 |  | ovex |  |-  ( A +s C ) e. _V | 
						
							| 85 |  | breq2 |  |-  ( y = ( A +s C ) -> ( x <_s y <-> x <_s ( A +s C ) ) ) | 
						
							| 86 | 84 85 | rexsn |  |-  ( E. y e. { ( A +s C ) } x <_s y <-> x <_s ( A +s C ) ) | 
						
							| 87 | 86 | ralbii |  |-  ( A. x e. { ( 2s x.s A ) } E. y e. { ( A +s C ) } x <_s y <-> A. x e. { ( 2s x.s A ) } x <_s ( A +s C ) ) | 
						
							| 88 |  | ovex |  |-  ( 2s x.s A ) e. _V | 
						
							| 89 |  | breq1 |  |-  ( x = ( 2s x.s A ) -> ( x <_s ( A +s C ) <-> ( 2s x.s A ) <_s ( A +s C ) ) ) | 
						
							| 90 | 88 89 | ralsn |  |-  ( A. x e. { ( 2s x.s A ) } x <_s ( A +s C ) <-> ( 2s x.s A ) <_s ( A +s C ) ) | 
						
							| 91 | 87 90 | bitri |  |-  ( A. x e. { ( 2s x.s A ) } E. y e. { ( A +s C ) } x <_s y <-> ( 2s x.s A ) <_s ( A +s C ) ) | 
						
							| 92 | 83 91 | sylibr |  |-  ( ph -> A. x e. { ( 2s x.s A ) } E. y e. { ( A +s C ) } x <_s y ) | 
						
							| 93 | 2 8 | addscld |  |-  ( ph -> ( B +s C ) e. No ) | 
						
							| 94 |  | slerflex |  |-  ( B e. No -> B <_s B ) | 
						
							| 95 | 2 94 | syl |  |-  ( ph -> B <_s B ) | 
						
							| 96 |  | breq1 |  |-  ( y = B -> ( y <_s B <-> B <_s B ) ) | 
						
							| 97 | 96 | rexsng |  |-  ( B e. No -> ( E. y e. { B } y <_s B <-> B <_s B ) ) | 
						
							| 98 | 2 97 | syl |  |-  ( ph -> ( E. y e. { B } y <_s B <-> B <_s B ) ) | 
						
							| 99 | 95 98 | mpbird |  |-  ( ph -> E. y e. { B } y <_s B ) | 
						
							| 100 | 99 | olcd |  |-  ( ph -> ( E. x e. ( _Left ` B ) C <_s x \/ E. y e. { B } y <_s B ) ) | 
						
							| 101 |  | lltropt |  |-  ( _Left ` B ) < | 
						
							| 102 | 101 | a1i |  |-  ( ph -> ( _Left ` B ) < | 
						
							| 103 |  | lrcut |  |-  ( B e. No -> ( ( _Left ` B ) |s ( _Right ` B ) ) = B ) | 
						
							| 104 | 2 103 | syl |  |-  ( ph -> ( ( _Left ` B ) |s ( _Right ` B ) ) = B ) | 
						
							| 105 | 104 | eqcomd |  |-  ( ph -> B = ( ( _Left ` B ) |s ( _Right ` B ) ) ) | 
						
							| 106 |  | sltrec |  |-  ( ( ( { A } < ( C  ( E. x e. ( _Left ` B ) C <_s x \/ E. y e. { B } y <_s B ) ) ) | 
						
							| 107 | 6 102 11 105 106 | syl22anc |  |-  ( ph -> ( C  ( E. x e. ( _Left ` B ) C <_s x \/ E. y e. { B } y <_s B ) ) ) | 
						
							| 108 | 100 107 | mpbird |  |-  ( ph -> C  | 
						
							| 109 | 8 2 2 | sltadd2d |  |-  ( ph -> ( C  ( B +s C )  | 
						
							| 110 | 108 109 | mpbid |  |-  ( ph -> ( B +s C )  | 
						
							| 111 |  | no2times |  |-  ( B e. No -> ( 2s x.s B ) = ( B +s B ) ) | 
						
							| 112 | 2 111 | syl |  |-  ( ph -> ( 2s x.s B ) = ( B +s B ) ) | 
						
							| 113 | 110 112 | breqtrrd |  |-  ( ph -> ( B +s C )  | 
						
							| 114 | 93 55 113 | sltled |  |-  ( ph -> ( B +s C ) <_s ( 2s x.s B ) ) | 
						
							| 115 |  | ovex |  |-  ( B +s C ) e. _V | 
						
							| 116 |  | breq1 |  |-  ( y = ( B +s C ) -> ( y <_s x <-> ( B +s C ) <_s x ) ) | 
						
							| 117 | 115 116 | rexsn |  |-  ( E. y e. { ( B +s C ) } y <_s x <-> ( B +s C ) <_s x ) | 
						
							| 118 | 117 | ralbii |  |-  ( A. x e. { ( 2s x.s B ) } E. y e. { ( B +s C ) } y <_s x <-> A. x e. { ( 2s x.s B ) } ( B +s C ) <_s x ) | 
						
							| 119 |  | ovex |  |-  ( 2s x.s B ) e. _V | 
						
							| 120 |  | breq2 |  |-  ( x = ( 2s x.s B ) -> ( ( B +s C ) <_s x <-> ( B +s C ) <_s ( 2s x.s B ) ) ) | 
						
							| 121 | 119 120 | ralsn |  |-  ( A. x e. { ( 2s x.s B ) } ( B +s C ) <_s x <-> ( B +s C ) <_s ( 2s x.s B ) ) | 
						
							| 122 | 118 121 | bitri |  |-  ( A. x e. { ( 2s x.s B ) } E. y e. { ( B +s C ) } y <_s x <-> ( B +s C ) <_s ( 2s x.s B ) ) | 
						
							| 123 | 114 122 | sylibr |  |-  ( ph -> A. x e. { ( 2s x.s B ) } E. y e. { ( B +s C ) } y <_s x ) | 
						
							| 124 | 1 2 | addscld |  |-  ( ph -> ( A +s B ) e. No ) | 
						
							| 125 | 8 2 1 | sltadd2d |  |-  ( ph -> ( C  ( A +s C )  | 
						
							| 126 | 108 125 | mpbid |  |-  ( ph -> ( A +s C )  | 
						
							| 127 | 62 124 126 | ssltsn |  |-  ( ph -> { ( A +s C ) } < | 
						
							| 128 | 4 | sneqd |  |-  ( ph -> { ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) } = { ( A +s B ) } ) | 
						
							| 129 | 127 128 | breqtrrd |  |-  ( ph -> { ( A +s C ) } < | 
						
							| 130 | 1 2 | addscomd |  |-  ( ph -> ( A +s B ) = ( B +s A ) ) | 
						
							| 131 | 1 8 2 | sltadd2d |  |-  ( ph -> ( A  ( B +s A )  | 
						
							| 132 | 79 131 | mpbid |  |-  ( ph -> ( B +s A )  | 
						
							| 133 | 130 132 | eqbrtrd |  |-  ( ph -> ( A +s B )  | 
						
							| 134 | 124 93 133 | ssltsn |  |-  ( ph -> { ( A +s B ) } < | 
						
							| 135 | 128 134 | eqbrtrd |  |-  ( ph -> { ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) } < | 
						
							| 136 | 61 92 123 129 135 | cofcut1d |  |-  ( ph -> ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) = ( { ( A +s C ) } |s { ( B +s C ) } ) ) | 
						
							| 137 | 51 136 4 | 3eqtr2d |  |-  ( ph -> ( ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) |s ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) ) = ( A +s B ) ) | 
						
							| 138 | 10 12 137 | 3eqtrd |  |-  ( ph -> ( 2s x.s C ) = ( A +s B ) ) | 
						
							| 139 |  | 2ne0s |  |-  2s =/= 0s | 
						
							| 140 | 139 | a1i |  |-  ( ph -> 2s =/= 0s ) | 
						
							| 141 | 124 8 53 140 | divsmuld |  |-  ( ph -> ( ( ( A +s B ) /su 2s ) = C <-> ( 2s x.s C ) = ( A +s B ) ) ) | 
						
							| 142 | 138 141 | mpbird |  |-  ( ph -> ( ( A +s B ) /su 2s ) = C ) | 
						
							| 143 | 142 | eqcomd |  |-  ( ph -> C = ( ( A +s B ) /su 2s ) ) |