| Step |
Hyp |
Ref |
Expression |
| 1 |
|
halfcut.1 |
|- ( ph -> A e. No ) |
| 2 |
|
halfcut.2 |
|- ( ph -> B e. No ) |
| 3 |
|
halfcut.3 |
|- ( ph -> A |
| 4 |
|
halfcut.4 |
|- ( ph -> ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) = ( A +s B ) ) |
| 5 |
|
halfcut.5 |
|- C = ( { A } |s { B } ) |
| 6 |
1 2 3
|
ssltsn |
|- ( ph -> { A } < |
| 7 |
6
|
scutcld |
|- ( ph -> ( { A } |s { B } ) e. No ) |
| 8 |
5 7
|
eqeltrid |
|- ( ph -> C e. No ) |
| 9 |
|
no2times |
|- ( C e. No -> ( 2s x.s C ) = ( C +s C ) ) |
| 10 |
8 9
|
syl |
|- ( ph -> ( 2s x.s C ) = ( C +s C ) ) |
| 11 |
5
|
a1i |
|- ( ph -> C = ( { A } |s { B } ) ) |
| 12 |
6 6 11 11
|
addsunif |
|- ( ph -> ( C +s C ) = ( ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) |s ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) ) ) |
| 13 |
|
oveq1 |
|- ( y = A -> ( y +s C ) = ( A +s C ) ) |
| 14 |
13
|
eqeq2d |
|- ( y = A -> ( x = ( y +s C ) <-> x = ( A +s C ) ) ) |
| 15 |
14
|
rexsng |
|- ( A e. No -> ( E. y e. { A } x = ( y +s C ) <-> x = ( A +s C ) ) ) |
| 16 |
1 15
|
syl |
|- ( ph -> ( E. y e. { A } x = ( y +s C ) <-> x = ( A +s C ) ) ) |
| 17 |
16
|
abbidv |
|- ( ph -> { x | E. y e. { A } x = ( y +s C ) } = { x | x = ( A +s C ) } ) |
| 18 |
|
oveq2 |
|- ( y = A -> ( C +s y ) = ( C +s A ) ) |
| 19 |
18
|
eqeq2d |
|- ( y = A -> ( x = ( C +s y ) <-> x = ( C +s A ) ) ) |
| 20 |
19
|
rexsng |
|- ( A e. No -> ( E. y e. { A } x = ( C +s y ) <-> x = ( C +s A ) ) ) |
| 21 |
1 20
|
syl |
|- ( ph -> ( E. y e. { A } x = ( C +s y ) <-> x = ( C +s A ) ) ) |
| 22 |
8 1
|
addscomd |
|- ( ph -> ( C +s A ) = ( A +s C ) ) |
| 23 |
22
|
eqeq2d |
|- ( ph -> ( x = ( C +s A ) <-> x = ( A +s C ) ) ) |
| 24 |
21 23
|
bitrd |
|- ( ph -> ( E. y e. { A } x = ( C +s y ) <-> x = ( A +s C ) ) ) |
| 25 |
24
|
abbidv |
|- ( ph -> { x | E. y e. { A } x = ( C +s y ) } = { x | x = ( A +s C ) } ) |
| 26 |
17 25
|
uneq12d |
|- ( ph -> ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) = ( { x | x = ( A +s C ) } u. { x | x = ( A +s C ) } ) ) |
| 27 |
|
df-sn |
|- { ( A +s C ) } = { x | x = ( A +s C ) } |
| 28 |
|
unidm |
|- ( { x | x = ( A +s C ) } u. { x | x = ( A +s C ) } ) = { x | x = ( A +s C ) } |
| 29 |
27 28
|
eqtr4i |
|- { ( A +s C ) } = ( { x | x = ( A +s C ) } u. { x | x = ( A +s C ) } ) |
| 30 |
26 29
|
eqtr4di |
|- ( ph -> ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) = { ( A +s C ) } ) |
| 31 |
|
oveq1 |
|- ( y = B -> ( y +s C ) = ( B +s C ) ) |
| 32 |
31
|
eqeq2d |
|- ( y = B -> ( x = ( y +s C ) <-> x = ( B +s C ) ) ) |
| 33 |
32
|
rexsng |
|- ( B e. No -> ( E. y e. { B } x = ( y +s C ) <-> x = ( B +s C ) ) ) |
| 34 |
2 33
|
syl |
|- ( ph -> ( E. y e. { B } x = ( y +s C ) <-> x = ( B +s C ) ) ) |
| 35 |
34
|
abbidv |
|- ( ph -> { x | E. y e. { B } x = ( y +s C ) } = { x | x = ( B +s C ) } ) |
| 36 |
|
oveq2 |
|- ( y = B -> ( C +s y ) = ( C +s B ) ) |
| 37 |
36
|
eqeq2d |
|- ( y = B -> ( x = ( C +s y ) <-> x = ( C +s B ) ) ) |
| 38 |
37
|
rexsng |
|- ( B e. No -> ( E. y e. { B } x = ( C +s y ) <-> x = ( C +s B ) ) ) |
| 39 |
2 38
|
syl |
|- ( ph -> ( E. y e. { B } x = ( C +s y ) <-> x = ( C +s B ) ) ) |
| 40 |
8 2
|
addscomd |
|- ( ph -> ( C +s B ) = ( B +s C ) ) |
| 41 |
40
|
eqeq2d |
|- ( ph -> ( x = ( C +s B ) <-> x = ( B +s C ) ) ) |
| 42 |
39 41
|
bitrd |
|- ( ph -> ( E. y e. { B } x = ( C +s y ) <-> x = ( B +s C ) ) ) |
| 43 |
42
|
abbidv |
|- ( ph -> { x | E. y e. { B } x = ( C +s y ) } = { x | x = ( B +s C ) } ) |
| 44 |
35 43
|
uneq12d |
|- ( ph -> ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) = ( { x | x = ( B +s C ) } u. { x | x = ( B +s C ) } ) ) |
| 45 |
|
df-sn |
|- { ( B +s C ) } = { x | x = ( B +s C ) } |
| 46 |
|
unidm |
|- ( { x | x = ( B +s C ) } u. { x | x = ( B +s C ) } ) = { x | x = ( B +s C ) } |
| 47 |
45 46
|
eqtr4i |
|- { ( B +s C ) } = ( { x | x = ( B +s C ) } u. { x | x = ( B +s C ) } ) |
| 48 |
44 47
|
eqtr4di |
|- ( ph -> ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) = { ( B +s C ) } ) |
| 49 |
30 48
|
oveq12d |
|- ( ph -> ( ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) |s ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) ) = ( { ( A +s C ) } |s { ( B +s C ) } ) ) |
| 50 |
|
2sno |
|- 2s e. No |
| 51 |
50
|
a1i |
|- ( ph -> 2s e. No ) |
| 52 |
51 1
|
mulscld |
|- ( ph -> ( 2s x.s A ) e. No ) |
| 53 |
51 2
|
mulscld |
|- ( ph -> ( 2s x.s B ) e. No ) |
| 54 |
|
2nns |
|- 2s e. NN_s |
| 55 |
|
nnsgt0 |
|- ( 2s e. NN_s -> 0s |
| 56 |
54 55
|
mp1i |
|- ( ph -> 0s |
| 57 |
1 2 51 56
|
sltmul2d |
|- ( ph -> ( A ( 2s x.s A ) |
| 58 |
3 57
|
mpbid |
|- ( ph -> ( 2s x.s A ) |
| 59 |
52 53 58
|
ssltsn |
|- ( ph -> { ( 2s x.s A ) } < |
| 60 |
|
no2times |
|- ( A e. No -> ( 2s x.s A ) = ( A +s A ) ) |
| 61 |
1 60
|
syl |
|- ( ph -> ( 2s x.s A ) = ( A +s A ) ) |
| 62 |
|
slerflex |
|- ( A e. No -> A <_s A ) |
| 63 |
1 62
|
syl |
|- ( ph -> A <_s A ) |
| 64 |
|
breq2 |
|- ( x = A -> ( A <_s x <-> A <_s A ) ) |
| 65 |
64
|
rexsng |
|- ( A e. No -> ( E. x e. { A } A <_s x <-> A <_s A ) ) |
| 66 |
1 65
|
syl |
|- ( ph -> ( E. x e. { A } A <_s x <-> A <_s A ) ) |
| 67 |
63 66
|
mpbird |
|- ( ph -> E. x e. { A } A <_s x ) |
| 68 |
67
|
orcd |
|- ( ph -> ( E. x e. { A } A <_s x \/ E. y e. ( _Right ` A ) y <_s C ) ) |
| 69 |
|
lltropt |
|- ( _Left ` A ) < |
| 70 |
69
|
a1i |
|- ( ph -> ( _Left ` A ) < |
| 71 |
|
lrcut |
|- ( A e. No -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
| 72 |
1 71
|
syl |
|- ( ph -> ( ( _Left ` A ) |s ( _Right ` A ) ) = A ) |
| 73 |
72
|
eqcomd |
|- ( ph -> A = ( ( _Left ` A ) |s ( _Right ` A ) ) ) |
| 74 |
|
sltrec |
|- ( ( ( ( _Left ` A ) < ( A ( E. x e. { A } A <_s x \/ E. y e. ( _Right ` A ) y <_s C ) ) ) |
| 75 |
70 6 73 11 74
|
syl22anc |
|- ( ph -> ( A ( E. x e. { A } A <_s x \/ E. y e. ( _Right ` A ) y <_s C ) ) ) |
| 76 |
68 75
|
mpbird |
|- ( ph -> A |
| 77 |
1 8 76
|
sltled |
|- ( ph -> A <_s C ) |
| 78 |
1 8 1
|
sleadd2d |
|- ( ph -> ( A <_s C <-> ( A +s A ) <_s ( A +s C ) ) ) |
| 79 |
77 78
|
mpbid |
|- ( ph -> ( A +s A ) <_s ( A +s C ) ) |
| 80 |
61 79
|
eqbrtrd |
|- ( ph -> ( 2s x.s A ) <_s ( A +s C ) ) |
| 81 |
|
ovex |
|- ( 2s x.s A ) e. _V |
| 82 |
|
breq1 |
|- ( x = ( 2s x.s A ) -> ( x <_s y <-> ( 2s x.s A ) <_s y ) ) |
| 83 |
82
|
rexbidv |
|- ( x = ( 2s x.s A ) -> ( E. y e. { ( A +s C ) } x <_s y <-> E. y e. { ( A +s C ) } ( 2s x.s A ) <_s y ) ) |
| 84 |
81 83
|
ralsn |
|- ( A. x e. { ( 2s x.s A ) } E. y e. { ( A +s C ) } x <_s y <-> E. y e. { ( A +s C ) } ( 2s x.s A ) <_s y ) |
| 85 |
|
ovex |
|- ( A +s C ) e. _V |
| 86 |
|
breq2 |
|- ( y = ( A +s C ) -> ( ( 2s x.s A ) <_s y <-> ( 2s x.s A ) <_s ( A +s C ) ) ) |
| 87 |
85 86
|
rexsn |
|- ( E. y e. { ( A +s C ) } ( 2s x.s A ) <_s y <-> ( 2s x.s A ) <_s ( A +s C ) ) |
| 88 |
84 87
|
bitri |
|- ( A. x e. { ( 2s x.s A ) } E. y e. { ( A +s C ) } x <_s y <-> ( 2s x.s A ) <_s ( A +s C ) ) |
| 89 |
80 88
|
sylibr |
|- ( ph -> A. x e. { ( 2s x.s A ) } E. y e. { ( A +s C ) } x <_s y ) |
| 90 |
|
slerflex |
|- ( B e. No -> B <_s B ) |
| 91 |
2 90
|
syl |
|- ( ph -> B <_s B ) |
| 92 |
|
breq1 |
|- ( y = B -> ( y <_s B <-> B <_s B ) ) |
| 93 |
92
|
rexsng |
|- ( B e. No -> ( E. y e. { B } y <_s B <-> B <_s B ) ) |
| 94 |
2 93
|
syl |
|- ( ph -> ( E. y e. { B } y <_s B <-> B <_s B ) ) |
| 95 |
91 94
|
mpbird |
|- ( ph -> E. y e. { B } y <_s B ) |
| 96 |
95
|
olcd |
|- ( ph -> ( E. x e. ( _Left ` B ) C <_s x \/ E. y e. { B } y <_s B ) ) |
| 97 |
|
lltropt |
|- ( _Left ` B ) < |
| 98 |
97
|
a1i |
|- ( ph -> ( _Left ` B ) < |
| 99 |
|
lrcut |
|- ( B e. No -> ( ( _Left ` B ) |s ( _Right ` B ) ) = B ) |
| 100 |
2 99
|
syl |
|- ( ph -> ( ( _Left ` B ) |s ( _Right ` B ) ) = B ) |
| 101 |
100
|
eqcomd |
|- ( ph -> B = ( ( _Left ` B ) |s ( _Right ` B ) ) ) |
| 102 |
|
sltrec |
|- ( ( ( { A } < ( C ( E. x e. ( _Left ` B ) C <_s x \/ E. y e. { B } y <_s B ) ) ) |
| 103 |
6 98 11 101 102
|
syl22anc |
|- ( ph -> ( C ( E. x e. ( _Left ` B ) C <_s x \/ E. y e. { B } y <_s B ) ) ) |
| 104 |
96 103
|
mpbird |
|- ( ph -> C |
| 105 |
8 2 104
|
sltled |
|- ( ph -> C <_s B ) |
| 106 |
8 2 2
|
sleadd2d |
|- ( ph -> ( C <_s B <-> ( B +s C ) <_s ( B +s B ) ) ) |
| 107 |
105 106
|
mpbid |
|- ( ph -> ( B +s C ) <_s ( B +s B ) ) |
| 108 |
|
no2times |
|- ( B e. No -> ( 2s x.s B ) = ( B +s B ) ) |
| 109 |
2 108
|
syl |
|- ( ph -> ( 2s x.s B ) = ( B +s B ) ) |
| 110 |
107 109
|
breqtrrd |
|- ( ph -> ( B +s C ) <_s ( 2s x.s B ) ) |
| 111 |
|
ovex |
|- ( 2s x.s B ) e. _V |
| 112 |
|
breq2 |
|- ( x = ( 2s x.s B ) -> ( y <_s x <-> y <_s ( 2s x.s B ) ) ) |
| 113 |
112
|
rexbidv |
|- ( x = ( 2s x.s B ) -> ( E. y e. { ( B +s C ) } y <_s x <-> E. y e. { ( B +s C ) } y <_s ( 2s x.s B ) ) ) |
| 114 |
111 113
|
ralsn |
|- ( A. x e. { ( 2s x.s B ) } E. y e. { ( B +s C ) } y <_s x <-> E. y e. { ( B +s C ) } y <_s ( 2s x.s B ) ) |
| 115 |
|
ovex |
|- ( B +s C ) e. _V |
| 116 |
|
breq1 |
|- ( y = ( B +s C ) -> ( y <_s ( 2s x.s B ) <-> ( B +s C ) <_s ( 2s x.s B ) ) ) |
| 117 |
115 116
|
rexsn |
|- ( E. y e. { ( B +s C ) } y <_s ( 2s x.s B ) <-> ( B +s C ) <_s ( 2s x.s B ) ) |
| 118 |
114 117
|
bitri |
|- ( A. x e. { ( 2s x.s B ) } E. y e. { ( B +s C ) } y <_s x <-> ( B +s C ) <_s ( 2s x.s B ) ) |
| 119 |
110 118
|
sylibr |
|- ( ph -> A. x e. { ( 2s x.s B ) } E. y e. { ( B +s C ) } y <_s x ) |
| 120 |
1 8
|
addscld |
|- ( ph -> ( A +s C ) e. No ) |
| 121 |
1 2
|
addscld |
|- ( ph -> ( A +s B ) e. No ) |
| 122 |
8 2 1
|
sltadd2d |
|- ( ph -> ( C ( A +s C ) |
| 123 |
104 122
|
mpbid |
|- ( ph -> ( A +s C ) |
| 124 |
120 121 123
|
ssltsn |
|- ( ph -> { ( A +s C ) } < |
| 125 |
4
|
sneqd |
|- ( ph -> { ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) } = { ( A +s B ) } ) |
| 126 |
124 125
|
breqtrrd |
|- ( ph -> { ( A +s C ) } < |
| 127 |
2 8
|
addscld |
|- ( ph -> ( B +s C ) e. No ) |
| 128 |
2 1
|
addscomd |
|- ( ph -> ( B +s A ) = ( A +s B ) ) |
| 129 |
1 8 2
|
sltadd2d |
|- ( ph -> ( A ( B +s A ) |
| 130 |
76 129
|
mpbid |
|- ( ph -> ( B +s A ) |
| 131 |
128 130
|
eqbrtrrd |
|- ( ph -> ( A +s B ) |
| 132 |
121 127 131
|
ssltsn |
|- ( ph -> { ( A +s B ) } < |
| 133 |
125 132
|
eqbrtrd |
|- ( ph -> { ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) } < |
| 134 |
59 89 119 126 133
|
cofcut1d |
|- ( ph -> ( { ( 2s x.s A ) } |s { ( 2s x.s B ) } ) = ( { ( A +s C ) } |s { ( B +s C ) } ) ) |
| 135 |
49 134 4
|
3eqtr2d |
|- ( ph -> ( ( { x | E. y e. { A } x = ( y +s C ) } u. { x | E. y e. { A } x = ( C +s y ) } ) |s ( { x | E. y e. { B } x = ( y +s C ) } u. { x | E. y e. { B } x = ( C +s y ) } ) ) = ( A +s B ) ) |
| 136 |
12 135
|
eqtrd |
|- ( ph -> ( C +s C ) = ( A +s B ) ) |
| 137 |
10 136
|
eqtrd |
|- ( ph -> ( 2s x.s C ) = ( A +s B ) ) |
| 138 |
|
2ne0s |
|- 2s =/= 0s |
| 139 |
138
|
a1i |
|- ( ph -> 2s =/= 0s ) |
| 140 |
|
0sno |
|- 0s e. No |
| 141 |
140
|
a1i |
|- ( T. -> 0s e. No ) |
| 142 |
|
1sno |
|- 1s e. No |
| 143 |
142
|
a1i |
|- ( T. -> 1s e. No ) |
| 144 |
|
0slt1s |
|- 0s |
| 145 |
144
|
a1i |
|- ( T. -> 0s |
| 146 |
141 143 145
|
ssltsn |
|- ( T. -> { 0s } < |
| 147 |
146
|
scutcld |
|- ( T. -> ( { 0s } |s { 1s } ) e. No ) |
| 148 |
147
|
mptru |
|- ( { 0s } |s { 1s } ) e. No |
| 149 |
|
twocut |
|- ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s |
| 150 |
|
oveq2 |
|- ( x = ( { 0s } |s { 1s } ) -> ( 2s x.s x ) = ( 2s x.s ( { 0s } |s { 1s } ) ) ) |
| 151 |
150
|
eqeq1d |
|- ( x = ( { 0s } |s { 1s } ) -> ( ( 2s x.s x ) = 1s <-> ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s ) ) |
| 152 |
151
|
rspcev |
|- ( ( ( { 0s } |s { 1s } ) e. No /\ ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s ) -> E. x e. No ( 2s x.s x ) = 1s ) |
| 153 |
148 149 152
|
mp2an |
|- E. x e. No ( 2s x.s x ) = 1s |
| 154 |
153
|
a1i |
|- ( ph -> E. x e. No ( 2s x.s x ) = 1s ) |
| 155 |
121 8 51 139 154
|
divsmulwd |
|- ( ph -> ( ( ( A +s B ) /su 2s ) = C <-> ( 2s x.s C ) = ( A +s B ) ) ) |
| 156 |
137 155
|
mpbird |
|- ( ph -> ( ( A +s B ) /su 2s ) = C ) |
| 157 |
156
|
eqcomd |
|- ( ph -> C = ( ( A +s B ) /su 2s ) ) |