| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addhalfcut.1 |
|- ( ph -> A e. NN0_s ) |
| 2 |
1
|
n0snod |
|- ( ph -> A e. No ) |
| 3 |
|
1sno |
|- 1s e. No |
| 4 |
3
|
a1i |
|- ( ph -> 1s e. No ) |
| 5 |
2 4
|
addscld |
|- ( ph -> ( A +s 1s ) e. No ) |
| 6 |
2
|
sltp1d |
|- ( ph -> A |
| 7 |
|
no2times |
|- ( A e. No -> ( 2s x.s A ) = ( A +s A ) ) |
| 8 |
2 7
|
syl |
|- ( ph -> ( 2s x.s A ) = ( A +s A ) ) |
| 9 |
8
|
oveq1d |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) = ( ( A +s A ) +s 1s ) ) |
| 10 |
2 2 4
|
addsassd |
|- ( ph -> ( ( A +s A ) +s 1s ) = ( A +s ( A +s 1s ) ) ) |
| 11 |
9 10
|
eqtr2d |
|- ( ph -> ( A +s ( A +s 1s ) ) = ( ( 2s x.s A ) +s 1s ) ) |
| 12 |
|
2nns |
|- 2s e. NN_s |
| 13 |
|
nnn0s |
|- ( 2s e. NN_s -> 2s e. NN0_s ) |
| 14 |
12 13
|
ax-mp |
|- 2s e. NN0_s |
| 15 |
14
|
a1i |
|- ( ph -> 2s e. NN0_s ) |
| 16 |
|
n0mulscl |
|- ( ( 2s e. NN0_s /\ A e. NN0_s ) -> ( 2s x.s A ) e. NN0_s ) |
| 17 |
15 1 16
|
syl2anc |
|- ( ph -> ( 2s x.s A ) e. NN0_s ) |
| 18 |
|
1n0s |
|- 1s e. NN0_s |
| 19 |
18
|
a1i |
|- ( ph -> 1s e. NN0_s ) |
| 20 |
|
n0addscl |
|- ( ( ( 2s x.s A ) e. NN0_s /\ 1s e. NN0_s ) -> ( ( 2s x.s A ) +s 1s ) e. NN0_s ) |
| 21 |
17 19 20
|
syl2anc |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) e. NN0_s ) |
| 22 |
|
n0scut |
|- ( ( ( 2s x.s A ) +s 1s ) e. NN0_s -> ( ( 2s x.s A ) +s 1s ) = ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s (/) ) ) |
| 23 |
21 22
|
syl |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) = ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s (/) ) ) |
| 24 |
|
2sno |
|- 2s e. No |
| 25 |
24
|
a1i |
|- ( ph -> 2s e. No ) |
| 26 |
25 2
|
mulscld |
|- ( ph -> ( 2s x.s A ) e. No ) |
| 27 |
|
pncans |
|- ( ( ( 2s x.s A ) e. No /\ 1s e. No ) -> ( ( ( 2s x.s A ) +s 1s ) -s 1s ) = ( 2s x.s A ) ) |
| 28 |
26 4 27
|
syl2anc |
|- ( ph -> ( ( ( 2s x.s A ) +s 1s ) -s 1s ) = ( 2s x.s A ) ) |
| 29 |
28
|
sneqd |
|- ( ph -> { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } = { ( 2s x.s A ) } ) |
| 30 |
29
|
oveq1d |
|- ( ph -> ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s (/) ) = ( { ( 2s x.s A ) } |s (/) ) ) |
| 31 |
23 30
|
eqtrd |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) = ( { ( 2s x.s A ) } |s (/) ) ) |
| 32 |
|
snelpwi |
|- ( ( 2s x.s A ) e. No -> { ( 2s x.s A ) } e. ~P No ) |
| 33 |
|
nulssgt |
|- ( { ( 2s x.s A ) } e. ~P No -> { ( 2s x.s A ) } < |
| 34 |
26 32 33
|
3syl |
|- ( ph -> { ( 2s x.s A ) } < |
| 35 |
|
slerflex |
|- ( ( 2s x.s A ) e. No -> ( 2s x.s A ) <_s ( 2s x.s A ) ) |
| 36 |
26 35
|
syl |
|- ( ph -> ( 2s x.s A ) <_s ( 2s x.s A ) ) |
| 37 |
|
ovex |
|- ( 2s x.s A ) e. _V |
| 38 |
|
breq2 |
|- ( y = ( 2s x.s A ) -> ( x <_s y <-> x <_s ( 2s x.s A ) ) ) |
| 39 |
37 38
|
rexsn |
|- ( E. y e. { ( 2s x.s A ) } x <_s y <-> x <_s ( 2s x.s A ) ) |
| 40 |
39
|
ralbii |
|- ( A. x e. { ( 2s x.s A ) } E. y e. { ( 2s x.s A ) } x <_s y <-> A. x e. { ( 2s x.s A ) } x <_s ( 2s x.s A ) ) |
| 41 |
|
breq1 |
|- ( x = ( 2s x.s A ) -> ( x <_s ( 2s x.s A ) <-> ( 2s x.s A ) <_s ( 2s x.s A ) ) ) |
| 42 |
37 41
|
ralsn |
|- ( A. x e. { ( 2s x.s A ) } x <_s ( 2s x.s A ) <-> ( 2s x.s A ) <_s ( 2s x.s A ) ) |
| 43 |
40 42
|
bitri |
|- ( A. x e. { ( 2s x.s A ) } E. y e. { ( 2s x.s A ) } x <_s y <-> ( 2s x.s A ) <_s ( 2s x.s A ) ) |
| 44 |
36 43
|
sylibr |
|- ( ph -> A. x e. { ( 2s x.s A ) } E. y e. { ( 2s x.s A ) } x <_s y ) |
| 45 |
|
ral0 |
|- A. x e. (/) E. y e. { ( 2s x.s ( A +s 1s ) ) } y <_s x |
| 46 |
45
|
a1i |
|- ( ph -> A. x e. (/) E. y e. { ( 2s x.s ( A +s 1s ) ) } y <_s x ) |
| 47 |
26 4
|
addscld |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) e. No ) |
| 48 |
26
|
sltp1d |
|- ( ph -> ( 2s x.s A ) |
| 49 |
26 47 48
|
ssltsn |
|- ( ph -> { ( 2s x.s A ) } < |
| 50 |
31
|
sneqd |
|- ( ph -> { ( ( 2s x.s A ) +s 1s ) } = { ( { ( 2s x.s A ) } |s (/) ) } ) |
| 51 |
49 50
|
breqtrd |
|- ( ph -> { ( 2s x.s A ) } < |
| 52 |
25 5
|
mulscld |
|- ( ph -> ( 2s x.s ( A +s 1s ) ) e. No ) |
| 53 |
4
|
sltp1d |
|- ( ph -> 1s |
| 54 |
|
1p1e2s |
|- ( 1s +s 1s ) = 2s |
| 55 |
53 54
|
breqtrdi |
|- ( ph -> 1s |
| 56 |
4 25 26
|
sltadd2d |
|- ( ph -> ( 1s ( ( 2s x.s A ) +s 1s ) |
| 57 |
55 56
|
mpbid |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) |
| 58 |
25 2 4
|
addsdid |
|- ( ph -> ( 2s x.s ( A +s 1s ) ) = ( ( 2s x.s A ) +s ( 2s x.s 1s ) ) ) |
| 59 |
|
mulsrid |
|- ( 2s e. No -> ( 2s x.s 1s ) = 2s ) |
| 60 |
24 59
|
ax-mp |
|- ( 2s x.s 1s ) = 2s |
| 61 |
60
|
oveq2i |
|- ( ( 2s x.s A ) +s ( 2s x.s 1s ) ) = ( ( 2s x.s A ) +s 2s ) |
| 62 |
58 61
|
eqtrdi |
|- ( ph -> ( 2s x.s ( A +s 1s ) ) = ( ( 2s x.s A ) +s 2s ) ) |
| 63 |
57 62
|
breqtrrd |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) |
| 64 |
47 52 63
|
ssltsn |
|- ( ph -> { ( ( 2s x.s A ) +s 1s ) } < |
| 65 |
50 64
|
eqbrtrrd |
|- ( ph -> { ( { ( 2s x.s A ) } |s (/) ) } < |
| 66 |
34 44 46 51 65
|
cofcut1d |
|- ( ph -> ( { ( 2s x.s A ) } |s (/) ) = ( { ( 2s x.s A ) } |s { ( 2s x.s ( A +s 1s ) ) } ) ) |
| 67 |
11 31 66
|
3eqtrrd |
|- ( ph -> ( { ( 2s x.s A ) } |s { ( 2s x.s ( A +s 1s ) ) } ) = ( A +s ( A +s 1s ) ) ) |
| 68 |
|
eqid |
|- ( { A } |s { ( A +s 1s ) } ) = ( { A } |s { ( A +s 1s ) } ) |
| 69 |
2 5 6 67 68
|
halfcut |
|- ( ph -> ( { A } |s { ( A +s 1s ) } ) = ( ( A +s ( A +s 1s ) ) /su 2s ) ) |
| 70 |
11
|
oveq1d |
|- ( ph -> ( ( A +s ( A +s 1s ) ) /su 2s ) = ( ( ( 2s x.s A ) +s 1s ) /su 2s ) ) |
| 71 |
|
2ne0s |
|- 2s =/= 0s |
| 72 |
71
|
a1i |
|- ( ph -> 2s =/= 0s ) |
| 73 |
26 4 25 72
|
divsdird |
|- ( ph -> ( ( ( 2s x.s A ) +s 1s ) /su 2s ) = ( ( ( 2s x.s A ) /su 2s ) +s ( 1s /su 2s ) ) ) |
| 74 |
2 25 72
|
divscan3d |
|- ( ph -> ( ( 2s x.s A ) /su 2s ) = A ) |
| 75 |
74
|
oveq1d |
|- ( ph -> ( ( ( 2s x.s A ) /su 2s ) +s ( 1s /su 2s ) ) = ( A +s ( 1s /su 2s ) ) ) |
| 76 |
73 75
|
eqtrd |
|- ( ph -> ( ( ( 2s x.s A ) +s 1s ) /su 2s ) = ( A +s ( 1s /su 2s ) ) ) |
| 77 |
69 70 76
|
3eqtrd |
|- ( ph -> ( { A } |s { ( A +s 1s ) } ) = ( A +s ( 1s /su 2s ) ) ) |