| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addhalfcut.1 |  |-  ( ph -> A e. NN0_s ) | 
						
							| 2 | 1 | n0snod |  |-  ( ph -> A e. No ) | 
						
							| 3 |  | 1sno |  |-  1s e. No | 
						
							| 4 | 3 | a1i |  |-  ( ph -> 1s e. No ) | 
						
							| 5 | 2 4 | addscld |  |-  ( ph -> ( A +s 1s ) e. No ) | 
						
							| 6 | 2 | sltp1d |  |-  ( ph -> A  | 
						
							| 7 |  | no2times |  |-  ( A e. No -> ( 2s x.s A ) = ( A +s A ) ) | 
						
							| 8 | 2 7 | syl |  |-  ( ph -> ( 2s x.s A ) = ( A +s A ) ) | 
						
							| 9 | 8 | oveq1d |  |-  ( ph -> ( ( 2s x.s A ) +s 1s ) = ( ( A +s A ) +s 1s ) ) | 
						
							| 10 | 2 2 4 | addsassd |  |-  ( ph -> ( ( A +s A ) +s 1s ) = ( A +s ( A +s 1s ) ) ) | 
						
							| 11 | 9 10 | eqtr2d |  |-  ( ph -> ( A +s ( A +s 1s ) ) = ( ( 2s x.s A ) +s 1s ) ) | 
						
							| 12 |  | 2nns |  |-  2s e. NN_s | 
						
							| 13 |  | nnn0s |  |-  ( 2s e. NN_s -> 2s e. NN0_s ) | 
						
							| 14 | 12 13 | ax-mp |  |-  2s e. NN0_s | 
						
							| 15 | 14 | a1i |  |-  ( ph -> 2s e. NN0_s ) | 
						
							| 16 |  | n0mulscl |  |-  ( ( 2s e. NN0_s /\ A e. NN0_s ) -> ( 2s x.s A ) e. NN0_s ) | 
						
							| 17 | 15 1 16 | syl2anc |  |-  ( ph -> ( 2s x.s A ) e. NN0_s ) | 
						
							| 18 |  | 1n0s |  |-  1s e. NN0_s | 
						
							| 19 | 18 | a1i |  |-  ( ph -> 1s e. NN0_s ) | 
						
							| 20 |  | n0addscl |  |-  ( ( ( 2s x.s A ) e. NN0_s /\ 1s e. NN0_s ) -> ( ( 2s x.s A ) +s 1s ) e. NN0_s ) | 
						
							| 21 | 17 19 20 | syl2anc |  |-  ( ph -> ( ( 2s x.s A ) +s 1s ) e. NN0_s ) | 
						
							| 22 |  | n0scut |  |-  ( ( ( 2s x.s A ) +s 1s ) e. NN0_s -> ( ( 2s x.s A ) +s 1s ) = ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s (/) ) ) | 
						
							| 23 | 21 22 | syl |  |-  ( ph -> ( ( 2s x.s A ) +s 1s ) = ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s (/) ) ) | 
						
							| 24 |  | 2sno |  |-  2s e. No | 
						
							| 25 | 24 | a1i |  |-  ( ph -> 2s e. No ) | 
						
							| 26 | 25 2 | mulscld |  |-  ( ph -> ( 2s x.s A ) e. No ) | 
						
							| 27 |  | pncans |  |-  ( ( ( 2s x.s A ) e. No /\ 1s e. No ) -> ( ( ( 2s x.s A ) +s 1s ) -s 1s ) = ( 2s x.s A ) ) | 
						
							| 28 | 26 4 27 | syl2anc |  |-  ( ph -> ( ( ( 2s x.s A ) +s 1s ) -s 1s ) = ( 2s x.s A ) ) | 
						
							| 29 | 28 | sneqd |  |-  ( ph -> { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } = { ( 2s x.s A ) } ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ph -> ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s (/) ) = ( { ( 2s x.s A ) } |s (/) ) ) | 
						
							| 31 | 23 30 | eqtrd |  |-  ( ph -> ( ( 2s x.s A ) +s 1s ) = ( { ( 2s x.s A ) } |s (/) ) ) | 
						
							| 32 |  | snelpwi |  |-  ( ( 2s x.s A ) e. No -> { ( 2s x.s A ) } e. ~P No ) | 
						
							| 33 |  | nulssgt |  |-  ( { ( 2s x.s A ) } e. ~P No -> { ( 2s x.s A ) } < | 
						
							| 34 | 26 32 33 | 3syl |  |-  ( ph -> { ( 2s x.s A ) } < | 
						
							| 35 |  | slerflex |  |-  ( ( 2s x.s A ) e. No -> ( 2s x.s A ) <_s ( 2s x.s A ) ) | 
						
							| 36 | 26 35 | syl |  |-  ( ph -> ( 2s x.s A ) <_s ( 2s x.s A ) ) | 
						
							| 37 |  | ovex |  |-  ( 2s x.s A ) e. _V | 
						
							| 38 |  | breq2 |  |-  ( y = ( 2s x.s A ) -> ( x <_s y <-> x <_s ( 2s x.s A ) ) ) | 
						
							| 39 | 37 38 | rexsn |  |-  ( E. y e. { ( 2s x.s A ) } x <_s y <-> x <_s ( 2s x.s A ) ) | 
						
							| 40 | 39 | ralbii |  |-  ( A. x e. { ( 2s x.s A ) } E. y e. { ( 2s x.s A ) } x <_s y <-> A. x e. { ( 2s x.s A ) } x <_s ( 2s x.s A ) ) | 
						
							| 41 |  | breq1 |  |-  ( x = ( 2s x.s A ) -> ( x <_s ( 2s x.s A ) <-> ( 2s x.s A ) <_s ( 2s x.s A ) ) ) | 
						
							| 42 | 37 41 | ralsn |  |-  ( A. x e. { ( 2s x.s A ) } x <_s ( 2s x.s A ) <-> ( 2s x.s A ) <_s ( 2s x.s A ) ) | 
						
							| 43 | 40 42 | bitri |  |-  ( A. x e. { ( 2s x.s A ) } E. y e. { ( 2s x.s A ) } x <_s y <-> ( 2s x.s A ) <_s ( 2s x.s A ) ) | 
						
							| 44 | 36 43 | sylibr |  |-  ( ph -> A. x e. { ( 2s x.s A ) } E. y e. { ( 2s x.s A ) } x <_s y ) | 
						
							| 45 |  | ral0 |  |-  A. x e. (/) E. y e. { ( 2s x.s ( A +s 1s ) ) } y <_s x | 
						
							| 46 | 45 | a1i |  |-  ( ph -> A. x e. (/) E. y e. { ( 2s x.s ( A +s 1s ) ) } y <_s x ) | 
						
							| 47 | 26 4 | addscld |  |-  ( ph -> ( ( 2s x.s A ) +s 1s ) e. No ) | 
						
							| 48 | 26 | sltp1d |  |-  ( ph -> ( 2s x.s A )  | 
						
							| 49 | 26 47 48 | ssltsn |  |-  ( ph -> { ( 2s x.s A ) } < | 
						
							| 50 | 31 | sneqd |  |-  ( ph -> { ( ( 2s x.s A ) +s 1s ) } = { ( { ( 2s x.s A ) } |s (/) ) } ) | 
						
							| 51 | 49 50 | breqtrd |  |-  ( ph -> { ( 2s x.s A ) } < | 
						
							| 52 | 25 5 | mulscld |  |-  ( ph -> ( 2s x.s ( A +s 1s ) ) e. No ) | 
						
							| 53 | 4 | sltp1d |  |-  ( ph -> 1s  | 
						
							| 54 |  | 1p1e2s |  |-  ( 1s +s 1s ) = 2s | 
						
							| 55 | 53 54 | breqtrdi |  |-  ( ph -> 1s  | 
						
							| 56 | 4 25 26 | sltadd2d |  |-  ( ph -> ( 1s  ( ( 2s x.s A ) +s 1s )  | 
						
							| 57 | 55 56 | mpbid |  |-  ( ph -> ( ( 2s x.s A ) +s 1s )  | 
						
							| 58 | 25 2 4 | addsdid |  |-  ( ph -> ( 2s x.s ( A +s 1s ) ) = ( ( 2s x.s A ) +s ( 2s x.s 1s ) ) ) | 
						
							| 59 |  | mulsrid |  |-  ( 2s e. No -> ( 2s x.s 1s ) = 2s ) | 
						
							| 60 | 24 59 | ax-mp |  |-  ( 2s x.s 1s ) = 2s | 
						
							| 61 | 60 | oveq2i |  |-  ( ( 2s x.s A ) +s ( 2s x.s 1s ) ) = ( ( 2s x.s A ) +s 2s ) | 
						
							| 62 | 58 61 | eqtrdi |  |-  ( ph -> ( 2s x.s ( A +s 1s ) ) = ( ( 2s x.s A ) +s 2s ) ) | 
						
							| 63 | 57 62 | breqtrrd |  |-  ( ph -> ( ( 2s x.s A ) +s 1s )  | 
						
							| 64 | 47 52 63 | ssltsn |  |-  ( ph -> { ( ( 2s x.s A ) +s 1s ) } < | 
						
							| 65 | 50 64 | eqbrtrrd |  |-  ( ph -> { ( { ( 2s x.s A ) } |s (/) ) } < | 
						
							| 66 | 34 44 46 51 65 | cofcut1d |  |-  ( ph -> ( { ( 2s x.s A ) } |s (/) ) = ( { ( 2s x.s A ) } |s { ( 2s x.s ( A +s 1s ) ) } ) ) | 
						
							| 67 | 11 31 66 | 3eqtrrd |  |-  ( ph -> ( { ( 2s x.s A ) } |s { ( 2s x.s ( A +s 1s ) ) } ) = ( A +s ( A +s 1s ) ) ) | 
						
							| 68 |  | eqid |  |-  ( { A } |s { ( A +s 1s ) } ) = ( { A } |s { ( A +s 1s ) } ) | 
						
							| 69 | 2 5 6 67 68 | halfcut |  |-  ( ph -> ( { A } |s { ( A +s 1s ) } ) = ( ( A +s ( A +s 1s ) ) /su 2s ) ) | 
						
							| 70 | 11 | oveq1d |  |-  ( ph -> ( ( A +s ( A +s 1s ) ) /su 2s ) = ( ( ( 2s x.s A ) +s 1s ) /su 2s ) ) | 
						
							| 71 |  | 2ne0s |  |-  2s =/= 0s | 
						
							| 72 | 71 | a1i |  |-  ( ph -> 2s =/= 0s ) | 
						
							| 73 | 26 4 25 72 | divsdird |  |-  ( ph -> ( ( ( 2s x.s A ) +s 1s ) /su 2s ) = ( ( ( 2s x.s A ) /su 2s ) +s ( 1s /su 2s ) ) ) | 
						
							| 74 | 2 25 72 | divscan3d |  |-  ( ph -> ( ( 2s x.s A ) /su 2s ) = A ) | 
						
							| 75 | 74 | oveq1d |  |-  ( ph -> ( ( ( 2s x.s A ) /su 2s ) +s ( 1s /su 2s ) ) = ( A +s ( 1s /su 2s ) ) ) | 
						
							| 76 | 73 75 | eqtrd |  |-  ( ph -> ( ( ( 2s x.s A ) +s 1s ) /su 2s ) = ( A +s ( 1s /su 2s ) ) ) | 
						
							| 77 | 69 70 76 | 3eqtrd |  |-  ( ph -> ( { A } |s { ( A +s 1s ) } ) = ( A +s ( 1s /su 2s ) ) ) |