Step |
Hyp |
Ref |
Expression |
1 |
|
addhalfcut.1 |
|- ( ph -> A e. NN0_s ) |
2 |
1
|
n0snod |
|- ( ph -> A e. No ) |
3 |
|
1sno |
|- 1s e. No |
4 |
3
|
a1i |
|- ( ph -> 1s e. No ) |
5 |
2 4
|
addscld |
|- ( ph -> ( A +s 1s ) e. No ) |
6 |
2
|
sltp1d |
|- ( ph -> A |
7 |
|
no2times |
|- ( A e. No -> ( 2s x.s A ) = ( A +s A ) ) |
8 |
2 7
|
syl |
|- ( ph -> ( 2s x.s A ) = ( A +s A ) ) |
9 |
8
|
oveq1d |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) = ( ( A +s A ) +s 1s ) ) |
10 |
2 2 4
|
addsassd |
|- ( ph -> ( ( A +s A ) +s 1s ) = ( A +s ( A +s 1s ) ) ) |
11 |
9 10
|
eqtr2d |
|- ( ph -> ( A +s ( A +s 1s ) ) = ( ( 2s x.s A ) +s 1s ) ) |
12 |
|
2nns |
|- 2s e. NN_s |
13 |
|
nnn0s |
|- ( 2s e. NN_s -> 2s e. NN0_s ) |
14 |
12 13
|
ax-mp |
|- 2s e. NN0_s |
15 |
14
|
a1i |
|- ( ph -> 2s e. NN0_s ) |
16 |
|
n0mulscl |
|- ( ( 2s e. NN0_s /\ A e. NN0_s ) -> ( 2s x.s A ) e. NN0_s ) |
17 |
15 1 16
|
syl2anc |
|- ( ph -> ( 2s x.s A ) e. NN0_s ) |
18 |
|
1n0s |
|- 1s e. NN0_s |
19 |
18
|
a1i |
|- ( ph -> 1s e. NN0_s ) |
20 |
|
n0addscl |
|- ( ( ( 2s x.s A ) e. NN0_s /\ 1s e. NN0_s ) -> ( ( 2s x.s A ) +s 1s ) e. NN0_s ) |
21 |
17 19 20
|
syl2anc |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) e. NN0_s ) |
22 |
|
n0scut |
|- ( ( ( 2s x.s A ) +s 1s ) e. NN0_s -> ( ( 2s x.s A ) +s 1s ) = ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s (/) ) ) |
23 |
21 22
|
syl |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) = ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s (/) ) ) |
24 |
|
2sno |
|- 2s e. No |
25 |
24
|
a1i |
|- ( ph -> 2s e. No ) |
26 |
25 2
|
mulscld |
|- ( ph -> ( 2s x.s A ) e. No ) |
27 |
|
pncans |
|- ( ( ( 2s x.s A ) e. No /\ 1s e. No ) -> ( ( ( 2s x.s A ) +s 1s ) -s 1s ) = ( 2s x.s A ) ) |
28 |
26 4 27
|
syl2anc |
|- ( ph -> ( ( ( 2s x.s A ) +s 1s ) -s 1s ) = ( 2s x.s A ) ) |
29 |
28
|
sneqd |
|- ( ph -> { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } = { ( 2s x.s A ) } ) |
30 |
29
|
oveq1d |
|- ( ph -> ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s (/) ) = ( { ( 2s x.s A ) } |s (/) ) ) |
31 |
23 30
|
eqtrd |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) = ( { ( 2s x.s A ) } |s (/) ) ) |
32 |
|
snelpwi |
|- ( ( 2s x.s A ) e. No -> { ( 2s x.s A ) } e. ~P No ) |
33 |
|
nulssgt |
|- ( { ( 2s x.s A ) } e. ~P No -> { ( 2s x.s A ) } < |
34 |
26 32 33
|
3syl |
|- ( ph -> { ( 2s x.s A ) } < |
35 |
|
slerflex |
|- ( ( 2s x.s A ) e. No -> ( 2s x.s A ) <_s ( 2s x.s A ) ) |
36 |
26 35
|
syl |
|- ( ph -> ( 2s x.s A ) <_s ( 2s x.s A ) ) |
37 |
|
ovex |
|- ( 2s x.s A ) e. _V |
38 |
|
breq2 |
|- ( y = ( 2s x.s A ) -> ( x <_s y <-> x <_s ( 2s x.s A ) ) ) |
39 |
37 38
|
rexsn |
|- ( E. y e. { ( 2s x.s A ) } x <_s y <-> x <_s ( 2s x.s A ) ) |
40 |
39
|
ralbii |
|- ( A. x e. { ( 2s x.s A ) } E. y e. { ( 2s x.s A ) } x <_s y <-> A. x e. { ( 2s x.s A ) } x <_s ( 2s x.s A ) ) |
41 |
|
breq1 |
|- ( x = ( 2s x.s A ) -> ( x <_s ( 2s x.s A ) <-> ( 2s x.s A ) <_s ( 2s x.s A ) ) ) |
42 |
37 41
|
ralsn |
|- ( A. x e. { ( 2s x.s A ) } x <_s ( 2s x.s A ) <-> ( 2s x.s A ) <_s ( 2s x.s A ) ) |
43 |
40 42
|
bitri |
|- ( A. x e. { ( 2s x.s A ) } E. y e. { ( 2s x.s A ) } x <_s y <-> ( 2s x.s A ) <_s ( 2s x.s A ) ) |
44 |
36 43
|
sylibr |
|- ( ph -> A. x e. { ( 2s x.s A ) } E. y e. { ( 2s x.s A ) } x <_s y ) |
45 |
|
ral0 |
|- A. x e. (/) E. y e. { ( 2s x.s ( A +s 1s ) ) } y <_s x |
46 |
45
|
a1i |
|- ( ph -> A. x e. (/) E. y e. { ( 2s x.s ( A +s 1s ) ) } y <_s x ) |
47 |
26 4
|
addscld |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) e. No ) |
48 |
26
|
sltp1d |
|- ( ph -> ( 2s x.s A ) |
49 |
26 47 48
|
ssltsn |
|- ( ph -> { ( 2s x.s A ) } < |
50 |
31
|
sneqd |
|- ( ph -> { ( ( 2s x.s A ) +s 1s ) } = { ( { ( 2s x.s A ) } |s (/) ) } ) |
51 |
49 50
|
breqtrd |
|- ( ph -> { ( 2s x.s A ) } < |
52 |
25 5
|
mulscld |
|- ( ph -> ( 2s x.s ( A +s 1s ) ) e. No ) |
53 |
4
|
sltp1d |
|- ( ph -> 1s |
54 |
|
1p1e2s |
|- ( 1s +s 1s ) = 2s |
55 |
53 54
|
breqtrdi |
|- ( ph -> 1s |
56 |
4 25 26
|
sltadd2d |
|- ( ph -> ( 1s ( ( 2s x.s A ) +s 1s ) |
57 |
55 56
|
mpbid |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) |
58 |
25 2 4
|
addsdid |
|- ( ph -> ( 2s x.s ( A +s 1s ) ) = ( ( 2s x.s A ) +s ( 2s x.s 1s ) ) ) |
59 |
|
mulsrid |
|- ( 2s e. No -> ( 2s x.s 1s ) = 2s ) |
60 |
24 59
|
ax-mp |
|- ( 2s x.s 1s ) = 2s |
61 |
60
|
oveq2i |
|- ( ( 2s x.s A ) +s ( 2s x.s 1s ) ) = ( ( 2s x.s A ) +s 2s ) |
62 |
58 61
|
eqtrdi |
|- ( ph -> ( 2s x.s ( A +s 1s ) ) = ( ( 2s x.s A ) +s 2s ) ) |
63 |
57 62
|
breqtrrd |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) |
64 |
47 52 63
|
ssltsn |
|- ( ph -> { ( ( 2s x.s A ) +s 1s ) } < |
65 |
50 64
|
eqbrtrrd |
|- ( ph -> { ( { ( 2s x.s A ) } |s (/) ) } < |
66 |
34 44 46 51 65
|
cofcut1d |
|- ( ph -> ( { ( 2s x.s A ) } |s (/) ) = ( { ( 2s x.s A ) } |s { ( 2s x.s ( A +s 1s ) ) } ) ) |
67 |
11 31 66
|
3eqtrrd |
|- ( ph -> ( { ( 2s x.s A ) } |s { ( 2s x.s ( A +s 1s ) ) } ) = ( A +s ( A +s 1s ) ) ) |
68 |
|
eqid |
|- ( { A } |s { ( A +s 1s ) } ) = ( { A } |s { ( A +s 1s ) } ) |
69 |
2 5 6 67 68
|
halfcut |
|- ( ph -> ( { A } |s { ( A +s 1s ) } ) = ( ( A +s ( A +s 1s ) ) /su 2s ) ) |
70 |
11
|
oveq1d |
|- ( ph -> ( ( A +s ( A +s 1s ) ) /su 2s ) = ( ( ( 2s x.s A ) +s 1s ) /su 2s ) ) |
71 |
|
2ne0s |
|- 2s =/= 0s |
72 |
71
|
a1i |
|- ( ph -> 2s =/= 0s ) |
73 |
26 4 25 72
|
divsdird |
|- ( ph -> ( ( ( 2s x.s A ) +s 1s ) /su 2s ) = ( ( ( 2s x.s A ) /su 2s ) +s ( 1s /su 2s ) ) ) |
74 |
2 25 72
|
divscan3d |
|- ( ph -> ( ( 2s x.s A ) /su 2s ) = A ) |
75 |
74
|
oveq1d |
|- ( ph -> ( ( ( 2s x.s A ) /su 2s ) +s ( 1s /su 2s ) ) = ( A +s ( 1s /su 2s ) ) ) |
76 |
73 75
|
eqtrd |
|- ( ph -> ( ( ( 2s x.s A ) +s 1s ) /su 2s ) = ( A +s ( 1s /su 2s ) ) ) |
77 |
69 70 76
|
3eqtrd |
|- ( ph -> ( { A } |s { ( A +s 1s ) } ) = ( A +s ( 1s /su 2s ) ) ) |