Step |
Hyp |
Ref |
Expression |
1 |
|
addhalfcut.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0s ) |
2 |
1
|
n0snod |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
3 |
|
1sno |
⊢ 1s ∈ No |
4 |
3
|
a1i |
⊢ ( 𝜑 → 1s ∈ No ) |
5 |
2 4
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 1s ) ∈ No ) |
6 |
2
|
sltp1d |
⊢ ( 𝜑 → 𝐴 <s ( 𝐴 +s 1s ) ) |
7 |
|
no2times |
⊢ ( 𝐴 ∈ No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
8 |
2 7
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
9 |
8
|
oveq1d |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( ( 𝐴 +s 𝐴 ) +s 1s ) ) |
10 |
2 2 4
|
addsassd |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐴 ) +s 1s ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) ) |
11 |
9 10
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐴 +s ( 𝐴 +s 1s ) ) = ( ( 2s ·s 𝐴 ) +s 1s ) ) |
12 |
|
2nns |
⊢ 2s ∈ ℕs |
13 |
|
nnn0s |
⊢ ( 2s ∈ ℕs → 2s ∈ ℕ0s ) |
14 |
12 13
|
ax-mp |
⊢ 2s ∈ ℕ0s |
15 |
14
|
a1i |
⊢ ( 𝜑 → 2s ∈ ℕ0s ) |
16 |
|
n0mulscl |
⊢ ( ( 2s ∈ ℕ0s ∧ 𝐴 ∈ ℕ0s ) → ( 2s ·s 𝐴 ) ∈ ℕ0s ) |
17 |
15 1 16
|
syl2anc |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ∈ ℕ0s ) |
18 |
|
1n0s |
⊢ 1s ∈ ℕ0s |
19 |
18
|
a1i |
⊢ ( 𝜑 → 1s ∈ ℕ0s ) |
20 |
|
n0addscl |
⊢ ( ( ( 2s ·s 𝐴 ) ∈ ℕ0s ∧ 1s ∈ ℕ0s ) → ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℕ0s ) |
21 |
17 19 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℕ0s ) |
22 |
|
n0scut |
⊢ ( ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℕ0s → ( ( 2s ·s 𝐴 ) +s 1s ) = ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s ∅ ) ) |
23 |
21 22
|
syl |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s ∅ ) ) |
24 |
|
2sno |
⊢ 2s ∈ No |
25 |
24
|
a1i |
⊢ ( 𝜑 → 2s ∈ No ) |
26 |
25 2
|
mulscld |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ∈ No ) |
27 |
|
pncans |
⊢ ( ( ( 2s ·s 𝐴 ) ∈ No ∧ 1s ∈ No ) → ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) = ( 2s ·s 𝐴 ) ) |
28 |
26 4 27
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) = ( 2s ·s 𝐴 ) ) |
29 |
28
|
sneqd |
⊢ ( 𝜑 → { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } = { ( 2s ·s 𝐴 ) } ) |
30 |
29
|
oveq1d |
⊢ ( 𝜑 → ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s ∅ ) = ( { ( 2s ·s 𝐴 ) } |s ∅ ) ) |
31 |
23 30
|
eqtrd |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( { ( 2s ·s 𝐴 ) } |s ∅ ) ) |
32 |
|
snelpwi |
⊢ ( ( 2s ·s 𝐴 ) ∈ No → { ( 2s ·s 𝐴 ) } ∈ 𝒫 No ) |
33 |
|
nulssgt |
⊢ ( { ( 2s ·s 𝐴 ) } ∈ 𝒫 No → { ( 2s ·s 𝐴 ) } <<s ∅ ) |
34 |
26 32 33
|
3syl |
⊢ ( 𝜑 → { ( 2s ·s 𝐴 ) } <<s ∅ ) |
35 |
|
slerflex |
⊢ ( ( 2s ·s 𝐴 ) ∈ No → ( 2s ·s 𝐴 ) ≤s ( 2s ·s 𝐴 ) ) |
36 |
26 35
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ≤s ( 2s ·s 𝐴 ) ) |
37 |
|
ovex |
⊢ ( 2s ·s 𝐴 ) ∈ V |
38 |
|
breq2 |
⊢ ( 𝑦 = ( 2s ·s 𝐴 ) → ( 𝑥 ≤s 𝑦 ↔ 𝑥 ≤s ( 2s ·s 𝐴 ) ) ) |
39 |
37 38
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s 𝑦 ↔ 𝑥 ≤s ( 2s ·s 𝐴 ) ) |
40 |
39
|
ralbii |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s 𝑦 ↔ ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s ( 2s ·s 𝐴 ) ) |
41 |
|
breq1 |
⊢ ( 𝑥 = ( 2s ·s 𝐴 ) → ( 𝑥 ≤s ( 2s ·s 𝐴 ) ↔ ( 2s ·s 𝐴 ) ≤s ( 2s ·s 𝐴 ) ) ) |
42 |
37 41
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s ( 2s ·s 𝐴 ) ↔ ( 2s ·s 𝐴 ) ≤s ( 2s ·s 𝐴 ) ) |
43 |
40 42
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s 𝑦 ↔ ( 2s ·s 𝐴 ) ≤s ( 2s ·s 𝐴 ) ) |
44 |
36 43
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s 𝑦 ) |
45 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( 2s ·s ( 𝐴 +s 1s ) ) } 𝑦 ≤s 𝑥 |
46 |
45
|
a1i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( 2s ·s ( 𝐴 +s 1s ) ) } 𝑦 ≤s 𝑥 ) |
47 |
26 4
|
addscld |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) ∈ No ) |
48 |
26
|
sltp1d |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) <s ( ( 2s ·s 𝐴 ) +s 1s ) ) |
49 |
26 47 48
|
ssltsn |
⊢ ( 𝜑 → { ( 2s ·s 𝐴 ) } <<s { ( ( 2s ·s 𝐴 ) +s 1s ) } ) |
50 |
31
|
sneqd |
⊢ ( 𝜑 → { ( ( 2s ·s 𝐴 ) +s 1s ) } = { ( { ( 2s ·s 𝐴 ) } |s ∅ ) } ) |
51 |
49 50
|
breqtrd |
⊢ ( 𝜑 → { ( 2s ·s 𝐴 ) } <<s { ( { ( 2s ·s 𝐴 ) } |s ∅ ) } ) |
52 |
25 5
|
mulscld |
⊢ ( 𝜑 → ( 2s ·s ( 𝐴 +s 1s ) ) ∈ No ) |
53 |
4
|
sltp1d |
⊢ ( 𝜑 → 1s <s ( 1s +s 1s ) ) |
54 |
|
1p1e2s |
⊢ ( 1s +s 1s ) = 2s |
55 |
53 54
|
breqtrdi |
⊢ ( 𝜑 → 1s <s 2s ) |
56 |
4 25 26
|
sltadd2d |
⊢ ( 𝜑 → ( 1s <s 2s ↔ ( ( 2s ·s 𝐴 ) +s 1s ) <s ( ( 2s ·s 𝐴 ) +s 2s ) ) ) |
57 |
55 56
|
mpbid |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) <s ( ( 2s ·s 𝐴 ) +s 2s ) ) |
58 |
25 2 4
|
addsdid |
⊢ ( 𝜑 → ( 2s ·s ( 𝐴 +s 1s ) ) = ( ( 2s ·s 𝐴 ) +s ( 2s ·s 1s ) ) ) |
59 |
|
mulsrid |
⊢ ( 2s ∈ No → ( 2s ·s 1s ) = 2s ) |
60 |
24 59
|
ax-mp |
⊢ ( 2s ·s 1s ) = 2s |
61 |
60
|
oveq2i |
⊢ ( ( 2s ·s 𝐴 ) +s ( 2s ·s 1s ) ) = ( ( 2s ·s 𝐴 ) +s 2s ) |
62 |
58 61
|
eqtrdi |
⊢ ( 𝜑 → ( 2s ·s ( 𝐴 +s 1s ) ) = ( ( 2s ·s 𝐴 ) +s 2s ) ) |
63 |
57 62
|
breqtrrd |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) <s ( 2s ·s ( 𝐴 +s 1s ) ) ) |
64 |
47 52 63
|
ssltsn |
⊢ ( 𝜑 → { ( ( 2s ·s 𝐴 ) +s 1s ) } <<s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) |
65 |
50 64
|
eqbrtrrd |
⊢ ( 𝜑 → { ( { ( 2s ·s 𝐴 ) } |s ∅ ) } <<s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) |
66 |
34 44 46 51 65
|
cofcut1d |
⊢ ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s ∅ ) = ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) ) |
67 |
11 31 66
|
3eqtrrd |
⊢ ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) ) |
68 |
|
eqid |
⊢ ( { 𝐴 } |s { ( 𝐴 +s 1s ) } ) = ( { 𝐴 } |s { ( 𝐴 +s 1s ) } ) |
69 |
2 5 6 67 68
|
halfcut |
⊢ ( 𝜑 → ( { 𝐴 } |s { ( 𝐴 +s 1s ) } ) = ( ( 𝐴 +s ( 𝐴 +s 1s ) ) /su 2s ) ) |
70 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 +s ( 𝐴 +s 1s ) ) /su 2s ) = ( ( ( 2s ·s 𝐴 ) +s 1s ) /su 2s ) ) |
71 |
|
2ne0s |
⊢ 2s ≠ 0s |
72 |
71
|
a1i |
⊢ ( 𝜑 → 2s ≠ 0s ) |
73 |
26 4 25 72
|
divsdird |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) /su 2s ) = ( ( ( 2s ·s 𝐴 ) /su 2s ) +s ( 1s /su 2s ) ) ) |
74 |
2 25 72
|
divscan3d |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) /su 2s ) = 𝐴 ) |
75 |
74
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) /su 2s ) +s ( 1s /su 2s ) ) = ( 𝐴 +s ( 1s /su 2s ) ) ) |
76 |
73 75
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) /su 2s ) = ( 𝐴 +s ( 1s /su 2s ) ) ) |
77 |
69 70 76
|
3eqtrd |
⊢ ( 𝜑 → ( { 𝐴 } |s { ( 𝐴 +s 1s ) } ) = ( 𝐴 +s ( 1s /su 2s ) ) ) |