| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addhalfcut.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℕ0s ) |
| 2 |
1
|
n0snod |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 3 |
|
1sno |
⊢ 1s ∈ No |
| 4 |
3
|
a1i |
⊢ ( 𝜑 → 1s ∈ No ) |
| 5 |
2 4
|
addscld |
⊢ ( 𝜑 → ( 𝐴 +s 1s ) ∈ No ) |
| 6 |
2
|
sltp1d |
⊢ ( 𝜑 → 𝐴 <s ( 𝐴 +s 1s ) ) |
| 7 |
|
no2times |
⊢ ( 𝐴 ∈ No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
| 8 |
2 7
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
| 9 |
8
|
oveq1d |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( ( 𝐴 +s 𝐴 ) +s 1s ) ) |
| 10 |
2 2 4
|
addsassd |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐴 ) +s 1s ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) ) |
| 11 |
9 10
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐴 +s ( 𝐴 +s 1s ) ) = ( ( 2s ·s 𝐴 ) +s 1s ) ) |
| 12 |
|
2nns |
⊢ 2s ∈ ℕs |
| 13 |
|
nnn0s |
⊢ ( 2s ∈ ℕs → 2s ∈ ℕ0s ) |
| 14 |
12 13
|
ax-mp |
⊢ 2s ∈ ℕ0s |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → 2s ∈ ℕ0s ) |
| 16 |
|
n0mulscl |
⊢ ( ( 2s ∈ ℕ0s ∧ 𝐴 ∈ ℕ0s ) → ( 2s ·s 𝐴 ) ∈ ℕ0s ) |
| 17 |
15 1 16
|
syl2anc |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ∈ ℕ0s ) |
| 18 |
|
1n0s |
⊢ 1s ∈ ℕ0s |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → 1s ∈ ℕ0s ) |
| 20 |
|
n0addscl |
⊢ ( ( ( 2s ·s 𝐴 ) ∈ ℕ0s ∧ 1s ∈ ℕ0s ) → ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℕ0s ) |
| 21 |
17 19 20
|
syl2anc |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℕ0s ) |
| 22 |
|
n0scut |
⊢ ( ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℕ0s → ( ( 2s ·s 𝐴 ) +s 1s ) = ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s ∅ ) ) |
| 23 |
21 22
|
syl |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s ∅ ) ) |
| 24 |
|
2sno |
⊢ 2s ∈ No |
| 25 |
24
|
a1i |
⊢ ( 𝜑 → 2s ∈ No ) |
| 26 |
25 2
|
mulscld |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ∈ No ) |
| 27 |
|
pncans |
⊢ ( ( ( 2s ·s 𝐴 ) ∈ No ∧ 1s ∈ No ) → ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) = ( 2s ·s 𝐴 ) ) |
| 28 |
26 4 27
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) = ( 2s ·s 𝐴 ) ) |
| 29 |
28
|
sneqd |
⊢ ( 𝜑 → { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } = { ( 2s ·s 𝐴 ) } ) |
| 30 |
29
|
oveq1d |
⊢ ( 𝜑 → ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s ∅ ) = ( { ( 2s ·s 𝐴 ) } |s ∅ ) ) |
| 31 |
23 30
|
eqtrd |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( { ( 2s ·s 𝐴 ) } |s ∅ ) ) |
| 32 |
|
snelpwi |
⊢ ( ( 2s ·s 𝐴 ) ∈ No → { ( 2s ·s 𝐴 ) } ∈ 𝒫 No ) |
| 33 |
|
nulssgt |
⊢ ( { ( 2s ·s 𝐴 ) } ∈ 𝒫 No → { ( 2s ·s 𝐴 ) } <<s ∅ ) |
| 34 |
26 32 33
|
3syl |
⊢ ( 𝜑 → { ( 2s ·s 𝐴 ) } <<s ∅ ) |
| 35 |
|
slerflex |
⊢ ( ( 2s ·s 𝐴 ) ∈ No → ( 2s ·s 𝐴 ) ≤s ( 2s ·s 𝐴 ) ) |
| 36 |
26 35
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ≤s ( 2s ·s 𝐴 ) ) |
| 37 |
|
ovex |
⊢ ( 2s ·s 𝐴 ) ∈ V |
| 38 |
|
breq2 |
⊢ ( 𝑦 = ( 2s ·s 𝐴 ) → ( 𝑥 ≤s 𝑦 ↔ 𝑥 ≤s ( 2s ·s 𝐴 ) ) ) |
| 39 |
37 38
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s 𝑦 ↔ 𝑥 ≤s ( 2s ·s 𝐴 ) ) |
| 40 |
39
|
ralbii |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s 𝑦 ↔ ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s ( 2s ·s 𝐴 ) ) |
| 41 |
|
breq1 |
⊢ ( 𝑥 = ( 2s ·s 𝐴 ) → ( 𝑥 ≤s ( 2s ·s 𝐴 ) ↔ ( 2s ·s 𝐴 ) ≤s ( 2s ·s 𝐴 ) ) ) |
| 42 |
37 41
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s ( 2s ·s 𝐴 ) ↔ ( 2s ·s 𝐴 ) ≤s ( 2s ·s 𝐴 ) ) |
| 43 |
40 42
|
bitri |
⊢ ( ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s 𝑦 ↔ ( 2s ·s 𝐴 ) ≤s ( 2s ·s 𝐴 ) ) |
| 44 |
36 43
|
sylibr |
⊢ ( 𝜑 → ∀ 𝑥 ∈ { ( 2s ·s 𝐴 ) } ∃ 𝑦 ∈ { ( 2s ·s 𝐴 ) } 𝑥 ≤s 𝑦 ) |
| 45 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( 2s ·s ( 𝐴 +s 1s ) ) } 𝑦 ≤s 𝑥 |
| 46 |
45
|
a1i |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ∅ ∃ 𝑦 ∈ { ( 2s ·s ( 𝐴 +s 1s ) ) } 𝑦 ≤s 𝑥 ) |
| 47 |
26 4
|
addscld |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) ∈ No ) |
| 48 |
26
|
sltp1d |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) <s ( ( 2s ·s 𝐴 ) +s 1s ) ) |
| 49 |
26 47 48
|
ssltsn |
⊢ ( 𝜑 → { ( 2s ·s 𝐴 ) } <<s { ( ( 2s ·s 𝐴 ) +s 1s ) } ) |
| 50 |
31
|
sneqd |
⊢ ( 𝜑 → { ( ( 2s ·s 𝐴 ) +s 1s ) } = { ( { ( 2s ·s 𝐴 ) } |s ∅ ) } ) |
| 51 |
49 50
|
breqtrd |
⊢ ( 𝜑 → { ( 2s ·s 𝐴 ) } <<s { ( { ( 2s ·s 𝐴 ) } |s ∅ ) } ) |
| 52 |
25 5
|
mulscld |
⊢ ( 𝜑 → ( 2s ·s ( 𝐴 +s 1s ) ) ∈ No ) |
| 53 |
4
|
sltp1d |
⊢ ( 𝜑 → 1s <s ( 1s +s 1s ) ) |
| 54 |
|
1p1e2s |
⊢ ( 1s +s 1s ) = 2s |
| 55 |
53 54
|
breqtrdi |
⊢ ( 𝜑 → 1s <s 2s ) |
| 56 |
4 25 26
|
sltadd2d |
⊢ ( 𝜑 → ( 1s <s 2s ↔ ( ( 2s ·s 𝐴 ) +s 1s ) <s ( ( 2s ·s 𝐴 ) +s 2s ) ) ) |
| 57 |
55 56
|
mpbid |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) <s ( ( 2s ·s 𝐴 ) +s 2s ) ) |
| 58 |
25 2 4
|
addsdid |
⊢ ( 𝜑 → ( 2s ·s ( 𝐴 +s 1s ) ) = ( ( 2s ·s 𝐴 ) +s ( 2s ·s 1s ) ) ) |
| 59 |
|
mulsrid |
⊢ ( 2s ∈ No → ( 2s ·s 1s ) = 2s ) |
| 60 |
24 59
|
ax-mp |
⊢ ( 2s ·s 1s ) = 2s |
| 61 |
60
|
oveq2i |
⊢ ( ( 2s ·s 𝐴 ) +s ( 2s ·s 1s ) ) = ( ( 2s ·s 𝐴 ) +s 2s ) |
| 62 |
58 61
|
eqtrdi |
⊢ ( 𝜑 → ( 2s ·s ( 𝐴 +s 1s ) ) = ( ( 2s ·s 𝐴 ) +s 2s ) ) |
| 63 |
57 62
|
breqtrrd |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) <s ( 2s ·s ( 𝐴 +s 1s ) ) ) |
| 64 |
47 52 63
|
ssltsn |
⊢ ( 𝜑 → { ( ( 2s ·s 𝐴 ) +s 1s ) } <<s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) |
| 65 |
50 64
|
eqbrtrrd |
⊢ ( 𝜑 → { ( { ( 2s ·s 𝐴 ) } |s ∅ ) } <<s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) |
| 66 |
34 44 46 51 65
|
cofcut1d |
⊢ ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s ∅ ) = ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) ) |
| 67 |
11 31 66
|
3eqtrrd |
⊢ ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) ) |
| 68 |
|
eqid |
⊢ ( { 𝐴 } |s { ( 𝐴 +s 1s ) } ) = ( { 𝐴 } |s { ( 𝐴 +s 1s ) } ) |
| 69 |
2 5 6 67 68
|
halfcut |
⊢ ( 𝜑 → ( { 𝐴 } |s { ( 𝐴 +s 1s ) } ) = ( ( 𝐴 +s ( 𝐴 +s 1s ) ) /su 2s ) ) |
| 70 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐴 +s ( 𝐴 +s 1s ) ) /su 2s ) = ( ( ( 2s ·s 𝐴 ) +s 1s ) /su 2s ) ) |
| 71 |
|
2ne0s |
⊢ 2s ≠ 0s |
| 72 |
71
|
a1i |
⊢ ( 𝜑 → 2s ≠ 0s ) |
| 73 |
26 4 25 72
|
divsdird |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) /su 2s ) = ( ( ( 2s ·s 𝐴 ) /su 2s ) +s ( 1s /su 2s ) ) ) |
| 74 |
2 25 72
|
divscan3d |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) /su 2s ) = 𝐴 ) |
| 75 |
74
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) /su 2s ) +s ( 1s /su 2s ) ) = ( 𝐴 +s ( 1s /su 2s ) ) ) |
| 76 |
73 75
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) /su 2s ) = ( 𝐴 +s ( 1s /su 2s ) ) ) |
| 77 |
69 70 76
|
3eqtrd |
⊢ ( 𝜑 → ( { 𝐴 } |s { ( 𝐴 +s 1s ) } ) = ( 𝐴 +s ( 1s /su 2s ) ) ) |