| Step | Hyp | Ref | Expression | 
						
							| 1 |  | addhalfcut.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℕ0s ) | 
						
							| 2 | 1 | n0snod | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 3 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 4 | 3 | a1i | ⊢ ( 𝜑  →   1s   ∈   No  ) | 
						
							| 5 | 2 4 | addscld | ⊢ ( 𝜑  →  ( 𝐴  +s   1s  )  ∈   No  ) | 
						
							| 6 | 2 | sltp1d | ⊢ ( 𝜑  →  𝐴  <s  ( 𝐴  +s   1s  ) ) | 
						
							| 7 |  | no2times | ⊢ ( 𝐴  ∈   No   →  ( 2s  ·s  𝐴 )  =  ( 𝐴  +s  𝐴 ) ) | 
						
							| 8 | 2 7 | syl | ⊢ ( 𝜑  →  ( 2s  ·s  𝐴 )  =  ( 𝐴  +s  𝐴 ) ) | 
						
							| 9 | 8 | oveq1d | ⊢ ( 𝜑  →  ( ( 2s  ·s  𝐴 )  +s   1s  )  =  ( ( 𝐴  +s  𝐴 )  +s   1s  ) ) | 
						
							| 10 | 2 2 4 | addsassd | ⊢ ( 𝜑  →  ( ( 𝐴  +s  𝐴 )  +s   1s  )  =  ( 𝐴  +s  ( 𝐴  +s   1s  ) ) ) | 
						
							| 11 | 9 10 | eqtr2d | ⊢ ( 𝜑  →  ( 𝐴  +s  ( 𝐴  +s   1s  ) )  =  ( ( 2s  ·s  𝐴 )  +s   1s  ) ) | 
						
							| 12 |  | 2nns | ⊢ 2s  ∈  ℕs | 
						
							| 13 |  | nnn0s | ⊢ ( 2s  ∈  ℕs  →  2s  ∈  ℕ0s ) | 
						
							| 14 | 12 13 | ax-mp | ⊢ 2s  ∈  ℕ0s | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →  2s  ∈  ℕ0s ) | 
						
							| 16 |  | n0mulscl | ⊢ ( ( 2s  ∈  ℕ0s  ∧  𝐴  ∈  ℕ0s )  →  ( 2s  ·s  𝐴 )  ∈  ℕ0s ) | 
						
							| 17 | 15 1 16 | syl2anc | ⊢ ( 𝜑  →  ( 2s  ·s  𝐴 )  ∈  ℕ0s ) | 
						
							| 18 |  | 1n0s | ⊢  1s   ∈  ℕ0s | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →   1s   ∈  ℕ0s ) | 
						
							| 20 |  | n0addscl | ⊢ ( ( ( 2s  ·s  𝐴 )  ∈  ℕ0s  ∧   1s   ∈  ℕ0s )  →  ( ( 2s  ·s  𝐴 )  +s   1s  )  ∈  ℕ0s ) | 
						
							| 21 | 17 19 20 | syl2anc | ⊢ ( 𝜑  →  ( ( 2s  ·s  𝐴 )  +s   1s  )  ∈  ℕ0s ) | 
						
							| 22 |  | n0scut | ⊢ ( ( ( 2s  ·s  𝐴 )  +s   1s  )  ∈  ℕ0s  →  ( ( 2s  ·s  𝐴 )  +s   1s  )  =  ( { ( ( ( 2s  ·s  𝐴 )  +s   1s  )  -s   1s  ) }  |s  ∅ ) ) | 
						
							| 23 | 21 22 | syl | ⊢ ( 𝜑  →  ( ( 2s  ·s  𝐴 )  +s   1s  )  =  ( { ( ( ( 2s  ·s  𝐴 )  +s   1s  )  -s   1s  ) }  |s  ∅ ) ) | 
						
							| 24 |  | 2sno | ⊢ 2s  ∈   No | 
						
							| 25 | 24 | a1i | ⊢ ( 𝜑  →  2s  ∈   No  ) | 
						
							| 26 | 25 2 | mulscld | ⊢ ( 𝜑  →  ( 2s  ·s  𝐴 )  ∈   No  ) | 
						
							| 27 |  | pncans | ⊢ ( ( ( 2s  ·s  𝐴 )  ∈   No   ∧   1s   ∈   No  )  →  ( ( ( 2s  ·s  𝐴 )  +s   1s  )  -s   1s  )  =  ( 2s  ·s  𝐴 ) ) | 
						
							| 28 | 26 4 27 | syl2anc | ⊢ ( 𝜑  →  ( ( ( 2s  ·s  𝐴 )  +s   1s  )  -s   1s  )  =  ( 2s  ·s  𝐴 ) ) | 
						
							| 29 | 28 | sneqd | ⊢ ( 𝜑  →  { ( ( ( 2s  ·s  𝐴 )  +s   1s  )  -s   1s  ) }  =  { ( 2s  ·s  𝐴 ) } ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝜑  →  ( { ( ( ( 2s  ·s  𝐴 )  +s   1s  )  -s   1s  ) }  |s  ∅ )  =  ( { ( 2s  ·s  𝐴 ) }  |s  ∅ ) ) | 
						
							| 31 | 23 30 | eqtrd | ⊢ ( 𝜑  →  ( ( 2s  ·s  𝐴 )  +s   1s  )  =  ( { ( 2s  ·s  𝐴 ) }  |s  ∅ ) ) | 
						
							| 32 |  | snelpwi | ⊢ ( ( 2s  ·s  𝐴 )  ∈   No   →  { ( 2s  ·s  𝐴 ) }  ∈  𝒫   No  ) | 
						
							| 33 |  | nulssgt | ⊢ ( { ( 2s  ·s  𝐴 ) }  ∈  𝒫   No   →  { ( 2s  ·s  𝐴 ) }  <<s  ∅ ) | 
						
							| 34 | 26 32 33 | 3syl | ⊢ ( 𝜑  →  { ( 2s  ·s  𝐴 ) }  <<s  ∅ ) | 
						
							| 35 |  | slerflex | ⊢ ( ( 2s  ·s  𝐴 )  ∈   No   →  ( 2s  ·s  𝐴 )  ≤s  ( 2s  ·s  𝐴 ) ) | 
						
							| 36 | 26 35 | syl | ⊢ ( 𝜑  →  ( 2s  ·s  𝐴 )  ≤s  ( 2s  ·s  𝐴 ) ) | 
						
							| 37 |  | ovex | ⊢ ( 2s  ·s  𝐴 )  ∈  V | 
						
							| 38 |  | breq2 | ⊢ ( 𝑦  =  ( 2s  ·s  𝐴 )  →  ( 𝑥  ≤s  𝑦  ↔  𝑥  ≤s  ( 2s  ·s  𝐴 ) ) ) | 
						
							| 39 | 37 38 | rexsn | ⊢ ( ∃ 𝑦  ∈  { ( 2s  ·s  𝐴 ) } 𝑥  ≤s  𝑦  ↔  𝑥  ≤s  ( 2s  ·s  𝐴 ) ) | 
						
							| 40 | 39 | ralbii | ⊢ ( ∀ 𝑥  ∈  { ( 2s  ·s  𝐴 ) } ∃ 𝑦  ∈  { ( 2s  ·s  𝐴 ) } 𝑥  ≤s  𝑦  ↔  ∀ 𝑥  ∈  { ( 2s  ·s  𝐴 ) } 𝑥  ≤s  ( 2s  ·s  𝐴 ) ) | 
						
							| 41 |  | breq1 | ⊢ ( 𝑥  =  ( 2s  ·s  𝐴 )  →  ( 𝑥  ≤s  ( 2s  ·s  𝐴 )  ↔  ( 2s  ·s  𝐴 )  ≤s  ( 2s  ·s  𝐴 ) ) ) | 
						
							| 42 | 37 41 | ralsn | ⊢ ( ∀ 𝑥  ∈  { ( 2s  ·s  𝐴 ) } 𝑥  ≤s  ( 2s  ·s  𝐴 )  ↔  ( 2s  ·s  𝐴 )  ≤s  ( 2s  ·s  𝐴 ) ) | 
						
							| 43 | 40 42 | bitri | ⊢ ( ∀ 𝑥  ∈  { ( 2s  ·s  𝐴 ) } ∃ 𝑦  ∈  { ( 2s  ·s  𝐴 ) } 𝑥  ≤s  𝑦  ↔  ( 2s  ·s  𝐴 )  ≤s  ( 2s  ·s  𝐴 ) ) | 
						
							| 44 | 36 43 | sylibr | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  { ( 2s  ·s  𝐴 ) } ∃ 𝑦  ∈  { ( 2s  ·s  𝐴 ) } 𝑥  ≤s  𝑦 ) | 
						
							| 45 |  | ral0 | ⊢ ∀ 𝑥  ∈  ∅ ∃ 𝑦  ∈  { ( 2s  ·s  ( 𝐴  +s   1s  ) ) } 𝑦  ≤s  𝑥 | 
						
							| 46 | 45 | a1i | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ∅ ∃ 𝑦  ∈  { ( 2s  ·s  ( 𝐴  +s   1s  ) ) } 𝑦  ≤s  𝑥 ) | 
						
							| 47 | 26 4 | addscld | ⊢ ( 𝜑  →  ( ( 2s  ·s  𝐴 )  +s   1s  )  ∈   No  ) | 
						
							| 48 | 26 | sltp1d | ⊢ ( 𝜑  →  ( 2s  ·s  𝐴 )  <s  ( ( 2s  ·s  𝐴 )  +s   1s  ) ) | 
						
							| 49 | 26 47 48 | ssltsn | ⊢ ( 𝜑  →  { ( 2s  ·s  𝐴 ) }  <<s  { ( ( 2s  ·s  𝐴 )  +s   1s  ) } ) | 
						
							| 50 | 31 | sneqd | ⊢ ( 𝜑  →  { ( ( 2s  ·s  𝐴 )  +s   1s  ) }  =  { ( { ( 2s  ·s  𝐴 ) }  |s  ∅ ) } ) | 
						
							| 51 | 49 50 | breqtrd | ⊢ ( 𝜑  →  { ( 2s  ·s  𝐴 ) }  <<s  { ( { ( 2s  ·s  𝐴 ) }  |s  ∅ ) } ) | 
						
							| 52 | 25 5 | mulscld | ⊢ ( 𝜑  →  ( 2s  ·s  ( 𝐴  +s   1s  ) )  ∈   No  ) | 
						
							| 53 | 4 | sltp1d | ⊢ ( 𝜑  →   1s   <s  (  1s   +s   1s  ) ) | 
						
							| 54 |  | 1p1e2s | ⊢ (  1s   +s   1s  )  =  2s | 
						
							| 55 | 53 54 | breqtrdi | ⊢ ( 𝜑  →   1s   <s  2s ) | 
						
							| 56 | 4 25 26 | sltadd2d | ⊢ ( 𝜑  →  (  1s   <s  2s  ↔  ( ( 2s  ·s  𝐴 )  +s   1s  )  <s  ( ( 2s  ·s  𝐴 )  +s  2s ) ) ) | 
						
							| 57 | 55 56 | mpbid | ⊢ ( 𝜑  →  ( ( 2s  ·s  𝐴 )  +s   1s  )  <s  ( ( 2s  ·s  𝐴 )  +s  2s ) ) | 
						
							| 58 | 25 2 4 | addsdid | ⊢ ( 𝜑  →  ( 2s  ·s  ( 𝐴  +s   1s  ) )  =  ( ( 2s  ·s  𝐴 )  +s  ( 2s  ·s   1s  ) ) ) | 
						
							| 59 |  | mulsrid | ⊢ ( 2s  ∈   No   →  ( 2s  ·s   1s  )  =  2s ) | 
						
							| 60 | 24 59 | ax-mp | ⊢ ( 2s  ·s   1s  )  =  2s | 
						
							| 61 | 60 | oveq2i | ⊢ ( ( 2s  ·s  𝐴 )  +s  ( 2s  ·s   1s  ) )  =  ( ( 2s  ·s  𝐴 )  +s  2s ) | 
						
							| 62 | 58 61 | eqtrdi | ⊢ ( 𝜑  →  ( 2s  ·s  ( 𝐴  +s   1s  ) )  =  ( ( 2s  ·s  𝐴 )  +s  2s ) ) | 
						
							| 63 | 57 62 | breqtrrd | ⊢ ( 𝜑  →  ( ( 2s  ·s  𝐴 )  +s   1s  )  <s  ( 2s  ·s  ( 𝐴  +s   1s  ) ) ) | 
						
							| 64 | 47 52 63 | ssltsn | ⊢ ( 𝜑  →  { ( ( 2s  ·s  𝐴 )  +s   1s  ) }  <<s  { ( 2s  ·s  ( 𝐴  +s   1s  ) ) } ) | 
						
							| 65 | 50 64 | eqbrtrrd | ⊢ ( 𝜑  →  { ( { ( 2s  ·s  𝐴 ) }  |s  ∅ ) }  <<s  { ( 2s  ·s  ( 𝐴  +s   1s  ) ) } ) | 
						
							| 66 | 34 44 46 51 65 | cofcut1d | ⊢ ( 𝜑  →  ( { ( 2s  ·s  𝐴 ) }  |s  ∅ )  =  ( { ( 2s  ·s  𝐴 ) }  |s  { ( 2s  ·s  ( 𝐴  +s   1s  ) ) } ) ) | 
						
							| 67 | 11 31 66 | 3eqtrrd | ⊢ ( 𝜑  →  ( { ( 2s  ·s  𝐴 ) }  |s  { ( 2s  ·s  ( 𝐴  +s   1s  ) ) } )  =  ( 𝐴  +s  ( 𝐴  +s   1s  ) ) ) | 
						
							| 68 |  | eqid | ⊢ ( { 𝐴 }  |s  { ( 𝐴  +s   1s  ) } )  =  ( { 𝐴 }  |s  { ( 𝐴  +s   1s  ) } ) | 
						
							| 69 | 2 5 6 67 68 | halfcut | ⊢ ( 𝜑  →  ( { 𝐴 }  |s  { ( 𝐴  +s   1s  ) } )  =  ( ( 𝐴  +s  ( 𝐴  +s   1s  ) )  /su  2s ) ) | 
						
							| 70 | 11 | oveq1d | ⊢ ( 𝜑  →  ( ( 𝐴  +s  ( 𝐴  +s   1s  ) )  /su  2s )  =  ( ( ( 2s  ·s  𝐴 )  +s   1s  )  /su  2s ) ) | 
						
							| 71 |  | 2ne0s | ⊢ 2s  ≠   0s | 
						
							| 72 | 71 | a1i | ⊢ ( 𝜑  →  2s  ≠   0s  ) | 
						
							| 73 | 26 4 25 72 | divsdird | ⊢ ( 𝜑  →  ( ( ( 2s  ·s  𝐴 )  +s   1s  )  /su  2s )  =  ( ( ( 2s  ·s  𝐴 )  /su  2s )  +s  (  1s   /su  2s ) ) ) | 
						
							| 74 | 2 25 72 | divscan3d | ⊢ ( 𝜑  →  ( ( 2s  ·s  𝐴 )  /su  2s )  =  𝐴 ) | 
						
							| 75 | 74 | oveq1d | ⊢ ( 𝜑  →  ( ( ( 2s  ·s  𝐴 )  /su  2s )  +s  (  1s   /su  2s ) )  =  ( 𝐴  +s  (  1s   /su  2s ) ) ) | 
						
							| 76 | 73 75 | eqtrd | ⊢ ( 𝜑  →  ( ( ( 2s  ·s  𝐴 )  +s   1s  )  /su  2s )  =  ( 𝐴  +s  (  1s   /su  2s ) ) ) | 
						
							| 77 | 69 70 76 | 3eqtrd | ⊢ ( 𝜑  →  ( { 𝐴 }  |s  { ( 𝐴  +s   1s  ) } )  =  ( 𝐴  +s  (  1s   /su  2s ) ) ) |