| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2cut.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 2 |
|
pw2cut.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
| 3 |
|
pw2cut.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
| 4 |
|
pw2cut.4 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
| 5 |
|
pw2cut.5 |
⊢ ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) = ( 𝐴 +s 𝐵 ) ) |
| 6 |
|
oveq2 |
⊢ ( 𝑥 = 0s → ( 2s ↑s 𝑥 ) = ( 2s ↑s 0s ) ) |
| 7 |
|
2sno |
⊢ 2s ∈ No |
| 8 |
|
exps0 |
⊢ ( 2s ∈ No → ( 2s ↑s 0s ) = 1s ) |
| 9 |
7 8
|
ax-mp |
⊢ ( 2s ↑s 0s ) = 1s |
| 10 |
6 9
|
eqtrdi |
⊢ ( 𝑥 = 0s → ( 2s ↑s 𝑥 ) = 1s ) |
| 11 |
10
|
oveq2d |
⊢ ( 𝑥 = 0s → ( 𝐴 /su ( 2s ↑s 𝑥 ) ) = ( 𝐴 /su 1s ) ) |
| 12 |
11
|
sneqd |
⊢ ( 𝑥 = 0s → { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐴 /su 1s ) } ) |
| 13 |
10
|
oveq2d |
⊢ ( 𝑥 = 0s → ( 𝐵 /su ( 2s ↑s 𝑥 ) ) = ( 𝐵 /su 1s ) ) |
| 14 |
13
|
sneqd |
⊢ ( 𝑥 = 0s → { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐵 /su 1s ) } ) |
| 15 |
12 14
|
oveq12d |
⊢ ( 𝑥 = 0s → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( { ( 𝐴 /su 1s ) } |s { ( 𝐵 /su 1s ) } ) ) |
| 16 |
|
oveq1 |
⊢ ( 𝑥 = 0s → ( 𝑥 +s 1s ) = ( 0s +s 1s ) ) |
| 17 |
|
1sno |
⊢ 1s ∈ No |
| 18 |
|
addslid |
⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) |
| 19 |
17 18
|
ax-mp |
⊢ ( 0s +s 1s ) = 1s |
| 20 |
16 19
|
eqtrdi |
⊢ ( 𝑥 = 0s → ( 𝑥 +s 1s ) = 1s ) |
| 21 |
20
|
oveq2d |
⊢ ( 𝑥 = 0s → ( 2s ↑s ( 𝑥 +s 1s ) ) = ( 2s ↑s 1s ) ) |
| 22 |
|
exps1 |
⊢ ( 2s ∈ No → ( 2s ↑s 1s ) = 2s ) |
| 23 |
7 22
|
ax-mp |
⊢ ( 2s ↑s 1s ) = 2s |
| 24 |
21 23
|
eqtrdi |
⊢ ( 𝑥 = 0s → ( 2s ↑s ( 𝑥 +s 1s ) ) = 2s ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑥 = 0s → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) |
| 26 |
15 25
|
eqeq12d |
⊢ ( 𝑥 = 0s → ( ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ↔ ( { ( 𝐴 /su 1s ) } |s { ( 𝐵 /su 1s ) } ) = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) ) |
| 27 |
26
|
imbi2d |
⊢ ( 𝑥 = 0s → ( ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ) ↔ ( 𝜑 → ( { ( 𝐴 /su 1s ) } |s { ( 𝐵 /su 1s ) } ) = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) ) ) |
| 28 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 2s ↑s 𝑥 ) = ( 2s ↑s 𝑦 ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 /su ( 2s ↑s 𝑥 ) ) = ( 𝐴 /su ( 2s ↑s 𝑦 ) ) ) |
| 30 |
29
|
sneqd |
⊢ ( 𝑥 = 𝑦 → { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } ) |
| 31 |
28
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 /su ( 2s ↑s 𝑥 ) ) = ( 𝐵 /su ( 2s ↑s 𝑦 ) ) ) |
| 32 |
31
|
sneqd |
⊢ ( 𝑥 = 𝑦 → { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) |
| 33 |
30 32
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) ) |
| 34 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 +s 1s ) = ( 𝑦 +s 1s ) ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 2s ↑s ( 𝑥 +s 1s ) ) = ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
| 36 |
35
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) |
| 37 |
33 36
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ↔ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) |
| 38 |
37
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ) ↔ ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) ) |
| 39 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 2s ↑s 𝑥 ) = ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
| 40 |
39
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝐴 /su ( 2s ↑s 𝑥 ) ) = ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) |
| 41 |
40
|
sneqd |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) |
| 42 |
39
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝐵 /su ( 2s ↑s 𝑥 ) ) = ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) |
| 43 |
42
|
sneqd |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) |
| 44 |
41 43
|
oveq12d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) ) |
| 45 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝑥 +s 1s ) = ( ( 𝑦 +s 1s ) +s 1s ) ) |
| 46 |
45
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 2s ↑s ( 𝑥 +s 1s ) ) = ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) |
| 47 |
46
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) |
| 48 |
44 47
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ↔ ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) ) |
| 49 |
48
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ) ↔ ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) ) ) |
| 50 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 2s ↑s 𝑥 ) = ( 2s ↑s 𝑁 ) ) |
| 51 |
50
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 /su ( 2s ↑s 𝑥 ) ) = ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) |
| 52 |
51
|
sneqd |
⊢ ( 𝑥 = 𝑁 → { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } ) |
| 53 |
50
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐵 /su ( 2s ↑s 𝑥 ) ) = ( 𝐵 /su ( 2s ↑s 𝑁 ) ) ) |
| 54 |
53
|
sneqd |
⊢ ( 𝑥 = 𝑁 → { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) |
| 55 |
52 54
|
oveq12d |
⊢ ( 𝑥 = 𝑁 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) ) |
| 56 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 +s 1s ) = ( 𝑁 +s 1s ) ) |
| 57 |
56
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 2s ↑s ( 𝑥 +s 1s ) ) = ( 2s ↑s ( 𝑁 +s 1s ) ) ) |
| 58 |
57
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) |
| 59 |
55 58
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ↔ ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) ) |
| 60 |
59
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ) ↔ ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) ) ) |
| 61 |
|
divs1 |
⊢ ( 𝐴 ∈ No → ( 𝐴 /su 1s ) = 𝐴 ) |
| 62 |
1 61
|
syl |
⊢ ( 𝜑 → ( 𝐴 /su 1s ) = 𝐴 ) |
| 63 |
62
|
sneqd |
⊢ ( 𝜑 → { ( 𝐴 /su 1s ) } = { 𝐴 } ) |
| 64 |
|
divs1 |
⊢ ( 𝐵 ∈ No → ( 𝐵 /su 1s ) = 𝐵 ) |
| 65 |
2 64
|
syl |
⊢ ( 𝜑 → ( 𝐵 /su 1s ) = 𝐵 ) |
| 66 |
65
|
sneqd |
⊢ ( 𝜑 → { ( 𝐵 /su 1s ) } = { 𝐵 } ) |
| 67 |
63 66
|
oveq12d |
⊢ ( 𝜑 → ( { ( 𝐴 /su 1s ) } |s { ( 𝐵 /su 1s ) } ) = ( { 𝐴 } |s { 𝐵 } ) ) |
| 68 |
|
eqid |
⊢ ( { 𝐴 } |s { 𝐵 } ) = ( { 𝐴 } |s { 𝐵 } ) |
| 69 |
1 2 4 5 68
|
halfcut |
⊢ ( 𝜑 → ( { 𝐴 } |s { 𝐵 } ) = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) |
| 70 |
67 69
|
eqtrd |
⊢ ( 𝜑 → ( { ( 𝐴 /su 1s ) } |s { ( 𝐵 /su 1s ) } ) = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) |
| 71 |
1
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 𝐴 ∈ No ) |
| 72 |
|
peano2n0s |
⊢ ( 𝑦 ∈ ℕ0s → ( 𝑦 +s 1s ) ∈ ℕ0s ) |
| 73 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ ( 𝑦 +s 1s ) ∈ ℕ0s ) → ( 2s ↑s ( 𝑦 +s 1s ) ) ∈ No ) |
| 74 |
7 72 73
|
sylancr |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s ( 𝑦 +s 1s ) ) ∈ No ) |
| 75 |
74
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s ( 𝑦 +s 1s ) ) ∈ No ) |
| 76 |
|
2ne0s |
⊢ 2s ≠ 0s |
| 77 |
|
expsne0 |
⊢ ( ( 2s ∈ No ∧ 2s ≠ 0s ∧ ( 𝑦 +s 1s ) ∈ ℕ0s ) → ( 2s ↑s ( 𝑦 +s 1s ) ) ≠ 0s ) |
| 78 |
7 76 77
|
mp3an12 |
⊢ ( ( 𝑦 +s 1s ) ∈ ℕ0s → ( 2s ↑s ( 𝑦 +s 1s ) ) ≠ 0s ) |
| 79 |
72 78
|
syl |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s ( 𝑦 +s 1s ) ) ≠ 0s ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s ( 𝑦 +s 1s ) ) ≠ 0s ) |
| 81 |
71 75 80
|
divscld |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ∈ No ) |
| 82 |
81
|
3adant3 |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ∈ No ) |
| 83 |
2
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 𝐵 ∈ No ) |
| 84 |
83 75 80
|
divscld |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ∈ No ) |
| 85 |
84
|
3adant3 |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ∈ No ) |
| 86 |
71 75 80
|
divscan1d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ·s ( 2s ↑s ( 𝑦 +s 1s ) ) ) = 𝐴 ) |
| 87 |
4
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 𝐴 <s 𝐵 ) |
| 88 |
86 87
|
eqbrtrd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ·s ( 2s ↑s ( 𝑦 +s 1s ) ) ) <s 𝐵 ) |
| 89 |
|
2nns |
⊢ 2s ∈ ℕs |
| 90 |
|
nnsgt0 |
⊢ ( 2s ∈ ℕs → 0s <s 2s ) |
| 91 |
89 90
|
ax-mp |
⊢ 0s <s 2s |
| 92 |
|
expsgt0 |
⊢ ( ( 2s ∈ No ∧ ( 𝑦 +s 1s ) ∈ ℕ0s ∧ 0s <s 2s ) → 0s <s ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
| 93 |
7 91 92
|
mp3an13 |
⊢ ( ( 𝑦 +s 1s ) ∈ ℕ0s → 0s <s ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
| 94 |
72 93
|
syl |
⊢ ( 𝑦 ∈ ℕ0s → 0s <s ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
| 95 |
94
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 0s <s ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
| 96 |
81 83 75 95
|
sltmuldivd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ·s ( 2s ↑s ( 𝑦 +s 1s ) ) ) <s 𝐵 ↔ ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) <s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) |
| 97 |
88 96
|
mpbid |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) <s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) |
| 98 |
97
|
3adant3 |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) <s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) |
| 99 |
|
expsp1 |
⊢ ( ( 2s ∈ No ∧ 𝑦 ∈ ℕ0s ) → ( 2s ↑s ( 𝑦 +s 1s ) ) = ( ( 2s ↑s 𝑦 ) ·s 2s ) ) |
| 100 |
7 99
|
mpan |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s ( 𝑦 +s 1s ) ) = ( ( 2s ↑s 𝑦 ) ·s 2s ) ) |
| 101 |
100
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s ( 𝑦 +s 1s ) ) = ( ( 2s ↑s 𝑦 ) ·s 2s ) ) |
| 102 |
101
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) = ( 𝐴 /su ( ( 2s ↑s 𝑦 ) ·s 2s ) ) ) |
| 103 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑦 ∈ ℕ0s ) → ( 2s ↑s 𝑦 ) ∈ No ) |
| 104 |
7 103
|
mpan |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s 𝑦 ) ∈ No ) |
| 105 |
104
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s 𝑦 ) ∈ No ) |
| 106 |
7
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 2s ∈ No ) |
| 107 |
|
expsne0 |
⊢ ( ( 2s ∈ No ∧ 2s ≠ 0s ∧ 𝑦 ∈ ℕ0s ) → ( 2s ↑s 𝑦 ) ≠ 0s ) |
| 108 |
7 76 107
|
mp3an12 |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s 𝑦 ) ≠ 0s ) |
| 109 |
108
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s 𝑦 ) ≠ 0s ) |
| 110 |
76
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 2s ≠ 0s ) |
| 111 |
71 105 106 109 110
|
divdivs1d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 /su ( 2s ↑s 𝑦 ) ) /su 2s ) = ( 𝐴 /su ( ( 2s ↑s 𝑦 ) ·s 2s ) ) ) |
| 112 |
102 111
|
eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) = ( ( 𝐴 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) |
| 113 |
112
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) = ( 2s ·s ( ( 𝐴 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) ) |
| 114 |
71 105 109
|
divscld |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 /su ( 2s ↑s 𝑦 ) ) ∈ No ) |
| 115 |
114 106 110
|
divscan2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( ( 𝐴 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) = ( 𝐴 /su ( 2s ↑s 𝑦 ) ) ) |
| 116 |
113 115
|
eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) = ( 𝐴 /su ( 2s ↑s 𝑦 ) ) ) |
| 117 |
116
|
sneqd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → { ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } = { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } ) |
| 118 |
101
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) = ( 𝐵 /su ( ( 2s ↑s 𝑦 ) ·s 2s ) ) ) |
| 119 |
83 105 106 109 110
|
divdivs1d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐵 /su ( 2s ↑s 𝑦 ) ) /su 2s ) = ( 𝐵 /su ( ( 2s ↑s 𝑦 ) ·s 2s ) ) ) |
| 120 |
118 119
|
eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) = ( ( 𝐵 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) |
| 121 |
120
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) = ( 2s ·s ( ( 𝐵 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) ) |
| 122 |
83 105 109
|
divscld |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐵 /su ( 2s ↑s 𝑦 ) ) ∈ No ) |
| 123 |
122 106 110
|
divscan2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( ( 𝐵 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) = ( 𝐵 /su ( 2s ↑s 𝑦 ) ) ) |
| 124 |
121 123
|
eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) = ( 𝐵 /su ( 2s ↑s 𝑦 ) ) ) |
| 125 |
124
|
sneqd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → { ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } = { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) |
| 126 |
117 125
|
oveq12d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( { ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } |s { ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } ) = ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) ) |
| 127 |
126
|
eqcomd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( { ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } |s { ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } ) ) |
| 128 |
71 83 75 80
|
divsdird |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) = ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) |
| 129 |
127 128
|
eqeq12d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ↔ ( { ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } |s { ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } ) = ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) ) |
| 130 |
129
|
biimp3a |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( { ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } |s { ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } ) = ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) |
| 131 |
|
eqid |
⊢ ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) |
| 132 |
82 85 98 130 131
|
halfcut |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) /su 2s ) ) |
| 133 |
128
|
oveq1d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) = ( ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) /su 2s ) ) |
| 134 |
133
|
3adant3 |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) = ( ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) /su 2s ) ) |
| 135 |
132 134
|
eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) ) |
| 136 |
|
expsp1 |
⊢ ( ( 2s ∈ No ∧ ( 𝑦 +s 1s ) ∈ ℕ0s ) → ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) = ( ( 2s ↑s ( 𝑦 +s 1s ) ) ·s 2s ) ) |
| 137 |
7 72 136
|
sylancr |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) = ( ( 2s ↑s ( 𝑦 +s 1s ) ) ·s 2s ) ) |
| 138 |
137
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) = ( ( 2s ↑s ( 𝑦 +s 1s ) ) ·s 2s ) ) |
| 139 |
138
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) = ( ( 𝐴 +s 𝐵 ) /su ( ( 2s ↑s ( 𝑦 +s 1s ) ) ·s 2s ) ) ) |
| 140 |
71 83
|
addscld |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 +s 𝐵 ) ∈ No ) |
| 141 |
140 75 106 80 110
|
divdivs1d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) = ( ( 𝐴 +s 𝐵 ) /su ( ( 2s ↑s ( 𝑦 +s 1s ) ) ·s 2s ) ) ) |
| 142 |
139 141
|
eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) = ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) ) |
| 143 |
142
|
3adant3 |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) = ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) ) |
| 144 |
135 143
|
eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) |
| 145 |
144
|
3exp |
⊢ ( 𝑦 ∈ ℕ0s → ( 𝜑 → ( ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) ) ) |
| 146 |
145
|
a2d |
⊢ ( 𝑦 ∈ ℕ0s → ( ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) ) ) |
| 147 |
27 38 49 60 70 146
|
n0sind |
⊢ ( 𝑁 ∈ ℕ0s → ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) ) |
| 148 |
3 147
|
mpcom |
⊢ ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) |