Step |
Hyp |
Ref |
Expression |
1 |
|
pw2cut.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
pw2cut.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
pw2cut.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
4 |
|
pw2cut.4 |
⊢ ( 𝜑 → 𝐴 <s 𝐵 ) |
5 |
|
pw2cut.5 |
⊢ ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s 𝐵 ) } ) = ( 𝐴 +s 𝐵 ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 0s → ( 2s ↑s 𝑥 ) = ( 2s ↑s 0s ) ) |
7 |
|
2sno |
⊢ 2s ∈ No |
8 |
|
exps0 |
⊢ ( 2s ∈ No → ( 2s ↑s 0s ) = 1s ) |
9 |
7 8
|
ax-mp |
⊢ ( 2s ↑s 0s ) = 1s |
10 |
6 9
|
eqtrdi |
⊢ ( 𝑥 = 0s → ( 2s ↑s 𝑥 ) = 1s ) |
11 |
10
|
oveq2d |
⊢ ( 𝑥 = 0s → ( 𝐴 /su ( 2s ↑s 𝑥 ) ) = ( 𝐴 /su 1s ) ) |
12 |
11
|
sneqd |
⊢ ( 𝑥 = 0s → { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐴 /su 1s ) } ) |
13 |
10
|
oveq2d |
⊢ ( 𝑥 = 0s → ( 𝐵 /su ( 2s ↑s 𝑥 ) ) = ( 𝐵 /su 1s ) ) |
14 |
13
|
sneqd |
⊢ ( 𝑥 = 0s → { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐵 /su 1s ) } ) |
15 |
12 14
|
oveq12d |
⊢ ( 𝑥 = 0s → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( { ( 𝐴 /su 1s ) } |s { ( 𝐵 /su 1s ) } ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = 0s → ( 𝑥 +s 1s ) = ( 0s +s 1s ) ) |
17 |
|
1sno |
⊢ 1s ∈ No |
18 |
|
addslid |
⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) |
19 |
17 18
|
ax-mp |
⊢ ( 0s +s 1s ) = 1s |
20 |
16 19
|
eqtrdi |
⊢ ( 𝑥 = 0s → ( 𝑥 +s 1s ) = 1s ) |
21 |
20
|
oveq2d |
⊢ ( 𝑥 = 0s → ( 2s ↑s ( 𝑥 +s 1s ) ) = ( 2s ↑s 1s ) ) |
22 |
|
exps1 |
⊢ ( 2s ∈ No → ( 2s ↑s 1s ) = 2s ) |
23 |
7 22
|
ax-mp |
⊢ ( 2s ↑s 1s ) = 2s |
24 |
21 23
|
eqtrdi |
⊢ ( 𝑥 = 0s → ( 2s ↑s ( 𝑥 +s 1s ) ) = 2s ) |
25 |
24
|
oveq2d |
⊢ ( 𝑥 = 0s → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) |
26 |
15 25
|
eqeq12d |
⊢ ( 𝑥 = 0s → ( ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ↔ ( { ( 𝐴 /su 1s ) } |s { ( 𝐵 /su 1s ) } ) = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) ) |
27 |
26
|
imbi2d |
⊢ ( 𝑥 = 0s → ( ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ) ↔ ( 𝜑 → ( { ( 𝐴 /su 1s ) } |s { ( 𝐵 /su 1s ) } ) = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) ) ) |
28 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 2s ↑s 𝑥 ) = ( 2s ↑s 𝑦 ) ) |
29 |
28
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 /su ( 2s ↑s 𝑥 ) ) = ( 𝐴 /su ( 2s ↑s 𝑦 ) ) ) |
30 |
29
|
sneqd |
⊢ ( 𝑥 = 𝑦 → { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } ) |
31 |
28
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐵 /su ( 2s ↑s 𝑥 ) ) = ( 𝐵 /su ( 2s ↑s 𝑦 ) ) ) |
32 |
31
|
sneqd |
⊢ ( 𝑥 = 𝑦 → { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) |
33 |
30 32
|
oveq12d |
⊢ ( 𝑥 = 𝑦 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) ) |
34 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 +s 1s ) = ( 𝑦 +s 1s ) ) |
35 |
34
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 2s ↑s ( 𝑥 +s 1s ) ) = ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
36 |
35
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) |
37 |
33 36
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ↔ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) |
38 |
37
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ) ↔ ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) ) |
39 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 2s ↑s 𝑥 ) = ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
40 |
39
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝐴 /su ( 2s ↑s 𝑥 ) ) = ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) |
41 |
40
|
sneqd |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) |
42 |
39
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝐵 /su ( 2s ↑s 𝑥 ) ) = ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) |
43 |
42
|
sneqd |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) |
44 |
41 43
|
oveq12d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) ) |
45 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 𝑥 +s 1s ) = ( ( 𝑦 +s 1s ) +s 1s ) ) |
46 |
45
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( 2s ↑s ( 𝑥 +s 1s ) ) = ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) |
47 |
46
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) |
48 |
44 47
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ↔ ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) ) |
49 |
48
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 +s 1s ) → ( ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ) ↔ ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) ) ) |
50 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 2s ↑s 𝑥 ) = ( 2s ↑s 𝑁 ) ) |
51 |
50
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 /su ( 2s ↑s 𝑥 ) ) = ( 𝐴 /su ( 2s ↑s 𝑁 ) ) ) |
52 |
51
|
sneqd |
⊢ ( 𝑥 = 𝑁 → { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } ) |
53 |
50
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝐵 /su ( 2s ↑s 𝑥 ) ) = ( 𝐵 /su ( 2s ↑s 𝑁 ) ) ) |
54 |
53
|
sneqd |
⊢ ( 𝑥 = 𝑁 → { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } = { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) |
55 |
52 54
|
oveq12d |
⊢ ( 𝑥 = 𝑁 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) ) |
56 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 +s 1s ) = ( 𝑁 +s 1s ) ) |
57 |
56
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 2s ↑s ( 𝑥 +s 1s ) ) = ( 2s ↑s ( 𝑁 +s 1s ) ) ) |
58 |
57
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) |
59 |
55 58
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ↔ ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) ) |
60 |
59
|
imbi2d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑥 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑥 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑥 +s 1s ) ) ) ) ↔ ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) ) ) |
61 |
|
divs1 |
⊢ ( 𝐴 ∈ No → ( 𝐴 /su 1s ) = 𝐴 ) |
62 |
1 61
|
syl |
⊢ ( 𝜑 → ( 𝐴 /su 1s ) = 𝐴 ) |
63 |
62
|
sneqd |
⊢ ( 𝜑 → { ( 𝐴 /su 1s ) } = { 𝐴 } ) |
64 |
|
divs1 |
⊢ ( 𝐵 ∈ No → ( 𝐵 /su 1s ) = 𝐵 ) |
65 |
2 64
|
syl |
⊢ ( 𝜑 → ( 𝐵 /su 1s ) = 𝐵 ) |
66 |
65
|
sneqd |
⊢ ( 𝜑 → { ( 𝐵 /su 1s ) } = { 𝐵 } ) |
67 |
63 66
|
oveq12d |
⊢ ( 𝜑 → ( { ( 𝐴 /su 1s ) } |s { ( 𝐵 /su 1s ) } ) = ( { 𝐴 } |s { 𝐵 } ) ) |
68 |
|
eqid |
⊢ ( { 𝐴 } |s { 𝐵 } ) = ( { 𝐴 } |s { 𝐵 } ) |
69 |
1 2 4 5 68
|
halfcut |
⊢ ( 𝜑 → ( { 𝐴 } |s { 𝐵 } ) = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) |
70 |
67 69
|
eqtrd |
⊢ ( 𝜑 → ( { ( 𝐴 /su 1s ) } |s { ( 𝐵 /su 1s ) } ) = ( ( 𝐴 +s 𝐵 ) /su 2s ) ) |
71 |
1
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 𝐴 ∈ No ) |
72 |
|
peano2n0s |
⊢ ( 𝑦 ∈ ℕ0s → ( 𝑦 +s 1s ) ∈ ℕ0s ) |
73 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ ( 𝑦 +s 1s ) ∈ ℕ0s ) → ( 2s ↑s ( 𝑦 +s 1s ) ) ∈ No ) |
74 |
7 72 73
|
sylancr |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s ( 𝑦 +s 1s ) ) ∈ No ) |
75 |
74
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s ( 𝑦 +s 1s ) ) ∈ No ) |
76 |
|
2ne0s |
⊢ 2s ≠ 0s |
77 |
|
expsne0 |
⊢ ( ( 2s ∈ No ∧ 2s ≠ 0s ∧ ( 𝑦 +s 1s ) ∈ ℕ0s ) → ( 2s ↑s ( 𝑦 +s 1s ) ) ≠ 0s ) |
78 |
7 76 77
|
mp3an12 |
⊢ ( ( 𝑦 +s 1s ) ∈ ℕ0s → ( 2s ↑s ( 𝑦 +s 1s ) ) ≠ 0s ) |
79 |
72 78
|
syl |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s ( 𝑦 +s 1s ) ) ≠ 0s ) |
80 |
79
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s ( 𝑦 +s 1s ) ) ≠ 0s ) |
81 |
71 75 80
|
divscld |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ∈ No ) |
82 |
81
|
3adant3 |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ∈ No ) |
83 |
2
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 𝐵 ∈ No ) |
84 |
83 75 80
|
divscld |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ∈ No ) |
85 |
84
|
3adant3 |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ∈ No ) |
86 |
71 75 80
|
divscan1d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ·s ( 2s ↑s ( 𝑦 +s 1s ) ) ) = 𝐴 ) |
87 |
4
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 𝐴 <s 𝐵 ) |
88 |
86 87
|
eqbrtrd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ·s ( 2s ↑s ( 𝑦 +s 1s ) ) ) <s 𝐵 ) |
89 |
|
2nns |
⊢ 2s ∈ ℕs |
90 |
|
nnsgt0 |
⊢ ( 2s ∈ ℕs → 0s <s 2s ) |
91 |
89 90
|
ax-mp |
⊢ 0s <s 2s |
92 |
|
expsgt0 |
⊢ ( ( 2s ∈ No ∧ ( 𝑦 +s 1s ) ∈ ℕ0s ∧ 0s <s 2s ) → 0s <s ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
93 |
7 91 92
|
mp3an13 |
⊢ ( ( 𝑦 +s 1s ) ∈ ℕ0s → 0s <s ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
94 |
72 93
|
syl |
⊢ ( 𝑦 ∈ ℕ0s → 0s <s ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
95 |
94
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 0s <s ( 2s ↑s ( 𝑦 +s 1s ) ) ) |
96 |
81 83 75 95
|
sltmuldivd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ·s ( 2s ↑s ( 𝑦 +s 1s ) ) ) <s 𝐵 ↔ ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) <s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) |
97 |
88 96
|
mpbid |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) <s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) |
98 |
97
|
3adant3 |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) <s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) |
99 |
|
expsp1 |
⊢ ( ( 2s ∈ No ∧ 𝑦 ∈ ℕ0s ) → ( 2s ↑s ( 𝑦 +s 1s ) ) = ( ( 2s ↑s 𝑦 ) ·s 2s ) ) |
100 |
7 99
|
mpan |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s ( 𝑦 +s 1s ) ) = ( ( 2s ↑s 𝑦 ) ·s 2s ) ) |
101 |
100
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s ( 𝑦 +s 1s ) ) = ( ( 2s ↑s 𝑦 ) ·s 2s ) ) |
102 |
101
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) = ( 𝐴 /su ( ( 2s ↑s 𝑦 ) ·s 2s ) ) ) |
103 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑦 ∈ ℕ0s ) → ( 2s ↑s 𝑦 ) ∈ No ) |
104 |
7 103
|
mpan |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s 𝑦 ) ∈ No ) |
105 |
104
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s 𝑦 ) ∈ No ) |
106 |
7
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 2s ∈ No ) |
107 |
|
expsne0 |
⊢ ( ( 2s ∈ No ∧ 2s ≠ 0s ∧ 𝑦 ∈ ℕ0s ) → ( 2s ↑s 𝑦 ) ≠ 0s ) |
108 |
7 76 107
|
mp3an12 |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s 𝑦 ) ≠ 0s ) |
109 |
108
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s 𝑦 ) ≠ 0s ) |
110 |
76
|
a1i |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → 2s ≠ 0s ) |
111 |
71 105 106 109 110
|
divdivs1d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 /su ( 2s ↑s 𝑦 ) ) /su 2s ) = ( 𝐴 /su ( ( 2s ↑s 𝑦 ) ·s 2s ) ) ) |
112 |
102 111
|
eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) = ( ( 𝐴 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) |
113 |
112
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) = ( 2s ·s ( ( 𝐴 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) ) |
114 |
71 105 109
|
divscld |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 /su ( 2s ↑s 𝑦 ) ) ∈ No ) |
115 |
114 106 110
|
divscan2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( ( 𝐴 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) = ( 𝐴 /su ( 2s ↑s 𝑦 ) ) ) |
116 |
113 115
|
eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) = ( 𝐴 /su ( 2s ↑s 𝑦 ) ) ) |
117 |
116
|
sneqd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → { ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } = { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } ) |
118 |
101
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) = ( 𝐵 /su ( ( 2s ↑s 𝑦 ) ·s 2s ) ) ) |
119 |
83 105 106 109 110
|
divdivs1d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐵 /su ( 2s ↑s 𝑦 ) ) /su 2s ) = ( 𝐵 /su ( ( 2s ↑s 𝑦 ) ·s 2s ) ) ) |
120 |
118 119
|
eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) = ( ( 𝐵 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) |
121 |
120
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) = ( 2s ·s ( ( 𝐵 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) ) |
122 |
83 105 109
|
divscld |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐵 /su ( 2s ↑s 𝑦 ) ) ∈ No ) |
123 |
122 106 110
|
divscan2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( ( 𝐵 /su ( 2s ↑s 𝑦 ) ) /su 2s ) ) = ( 𝐵 /su ( 2s ↑s 𝑦 ) ) ) |
124 |
121 123
|
eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) = ( 𝐵 /su ( 2s ↑s 𝑦 ) ) ) |
125 |
124
|
sneqd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → { ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } = { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) |
126 |
117 125
|
oveq12d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( { ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } |s { ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } ) = ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) ) |
127 |
126
|
eqcomd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( { ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } |s { ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } ) ) |
128 |
71 83 75 80
|
divsdird |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) = ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) |
129 |
127 128
|
eqeq12d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ↔ ( { ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } |s { ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } ) = ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) ) |
130 |
129
|
biimp3a |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( { ( 2s ·s ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } |s { ( 2s ·s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) } ) = ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) ) |
131 |
|
eqid |
⊢ ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) |
132 |
82 85 98 130 131
|
halfcut |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) /su 2s ) ) |
133 |
128
|
oveq1d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) = ( ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) /su 2s ) ) |
134 |
133
|
3adant3 |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) = ( ( ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) +s ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) /su 2s ) ) |
135 |
132 134
|
eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) ) |
136 |
|
expsp1 |
⊢ ( ( 2s ∈ No ∧ ( 𝑦 +s 1s ) ∈ ℕ0s ) → ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) = ( ( 2s ↑s ( 𝑦 +s 1s ) ) ·s 2s ) ) |
137 |
7 72 136
|
sylancr |
⊢ ( 𝑦 ∈ ℕ0s → ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) = ( ( 2s ↑s ( 𝑦 +s 1s ) ) ·s 2s ) ) |
138 |
137
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) = ( ( 2s ↑s ( 𝑦 +s 1s ) ) ·s 2s ) ) |
139 |
138
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) = ( ( 𝐴 +s 𝐵 ) /su ( ( 2s ↑s ( 𝑦 +s 1s ) ) ·s 2s ) ) ) |
140 |
71 83
|
addscld |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( 𝐴 +s 𝐵 ) ∈ No ) |
141 |
140 75 106 80 110
|
divdivs1d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) = ( ( 𝐴 +s 𝐵 ) /su ( ( 2s ↑s ( 𝑦 +s 1s ) ) ·s 2s ) ) ) |
142 |
139 141
|
eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ) → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) = ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) ) |
143 |
142
|
3adant3 |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) = ( ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) /su 2s ) ) |
144 |
135 143
|
eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝜑 ∧ ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) |
145 |
144
|
3exp |
⊢ ( 𝑦 ∈ ℕ0s → ( 𝜑 → ( ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) ) ) |
146 |
145
|
a2d |
⊢ ( 𝑦 ∈ ℕ0s → ( ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑦 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑦 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) ) → ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } |s { ( 𝐵 /su ( 2s ↑s ( 𝑦 +s 1s ) ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( ( 𝑦 +s 1s ) +s 1s ) ) ) ) ) ) |
147 |
27 38 49 60 70 146
|
n0sind |
⊢ ( 𝑁 ∈ ℕ0s → ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) ) |
148 |
3 147
|
mpcom |
⊢ ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( 𝐵 /su ( 2s ↑s 𝑁 ) ) } ) = ( ( 𝐴 +s 𝐵 ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) |