| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2cutp1.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤs ) |
| 2 |
|
pw2cutp1.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0s ) |
| 3 |
1
|
znod |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
| 4 |
|
1zs |
⊢ 1s ∈ ℤs |
| 5 |
|
zaddscl |
⊢ ( ( 𝐴 ∈ ℤs ∧ 1s ∈ ℤs ) → ( 𝐴 +s 1s ) ∈ ℤs ) |
| 6 |
1 4 5
|
sylancl |
⊢ ( 𝜑 → ( 𝐴 +s 1s ) ∈ ℤs ) |
| 7 |
6
|
znod |
⊢ ( 𝜑 → ( 𝐴 +s 1s ) ∈ No ) |
| 8 |
3
|
sltp1d |
⊢ ( 𝜑 → 𝐴 <s ( 𝐴 +s 1s ) ) |
| 9 |
|
2nns |
⊢ 2s ∈ ℕs |
| 10 |
|
nnzs |
⊢ ( 2s ∈ ℕs → 2s ∈ ℤs ) |
| 11 |
9 10
|
ax-mp |
⊢ 2s ∈ ℤs |
| 12 |
11
|
a1i |
⊢ ( 𝜑 → 2s ∈ ℤs ) |
| 13 |
12 1
|
zmulscld |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ∈ ℤs ) |
| 14 |
|
zaddscl |
⊢ ( ( ( 2s ·s 𝐴 ) ∈ ℤs ∧ 1s ∈ ℤs ) → ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℤs ) |
| 15 |
13 4 14
|
sylancl |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℤs ) |
| 16 |
|
zscut |
⊢ ( ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℤs → ( ( 2s ·s 𝐴 ) +s 1s ) = ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) } ) ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) } ) ) |
| 18 |
|
no2times |
⊢ ( 𝐴 ∈ No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
| 19 |
3 18
|
syl |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( ( 𝐴 +s 𝐴 ) +s 1s ) ) |
| 21 |
|
1sno |
⊢ 1s ∈ No |
| 22 |
21
|
a1i |
⊢ ( 𝜑 → 1s ∈ No ) |
| 23 |
3 3 22
|
addsassd |
⊢ ( 𝜑 → ( ( 𝐴 +s 𝐴 ) +s 1s ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) ) |
| 24 |
20 23
|
eqtrd |
⊢ ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) ) |
| 25 |
13
|
znod |
⊢ ( 𝜑 → ( 2s ·s 𝐴 ) ∈ No ) |
| 26 |
|
pncans |
⊢ ( ( ( 2s ·s 𝐴 ) ∈ No ∧ 1s ∈ No ) → ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) = ( 2s ·s 𝐴 ) ) |
| 27 |
25 21 26
|
sylancl |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) = ( 2s ·s 𝐴 ) ) |
| 28 |
27
|
sneqd |
⊢ ( 𝜑 → { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } = { ( 2s ·s 𝐴 ) } ) |
| 29 |
|
1p1e2s |
⊢ ( 1s +s 1s ) = 2s |
| 30 |
|
2sno |
⊢ 2s ∈ No |
| 31 |
|
mulsrid |
⊢ ( 2s ∈ No → ( 2s ·s 1s ) = 2s ) |
| 32 |
30 31
|
ax-mp |
⊢ ( 2s ·s 1s ) = 2s |
| 33 |
29 32
|
eqtr4i |
⊢ ( 1s +s 1s ) = ( 2s ·s 1s ) |
| 34 |
33
|
oveq2i |
⊢ ( ( 2s ·s 𝐴 ) +s ( 1s +s 1s ) ) = ( ( 2s ·s 𝐴 ) +s ( 2s ·s 1s ) ) |
| 35 |
25 22 22
|
addsassd |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) = ( ( 2s ·s 𝐴 ) +s ( 1s +s 1s ) ) ) |
| 36 |
30
|
a1i |
⊢ ( 𝜑 → 2s ∈ No ) |
| 37 |
36 3 22
|
addsdid |
⊢ ( 𝜑 → ( 2s ·s ( 𝐴 +s 1s ) ) = ( ( 2s ·s 𝐴 ) +s ( 2s ·s 1s ) ) ) |
| 38 |
34 35 37
|
3eqtr4a |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) = ( 2s ·s ( 𝐴 +s 1s ) ) ) |
| 39 |
38
|
sneqd |
⊢ ( 𝜑 → { ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) } = { ( 2s ·s ( 𝐴 +s 1s ) ) } ) |
| 40 |
28 39
|
oveq12d |
⊢ ( 𝜑 → ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) } ) = ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) ) |
| 41 |
17 24 40
|
3eqtr3rd |
⊢ ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) ) |
| 42 |
3 7 2 8 41
|
pw2cut |
⊢ ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑁 ) ) } ) = ( ( 𝐴 +s ( 𝐴 +s 1s ) ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) |
| 43 |
24
|
oveq1d |
⊢ ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) = ( ( 𝐴 +s ( 𝐴 +s 1s ) ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) |
| 44 |
42 43
|
eqtr4d |
⊢ ( 𝜑 → ( { ( 𝐴 /su ( 2s ↑s 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2s ↑s 𝑁 ) ) } ) = ( ( ( 2s ·s 𝐴 ) +s 1s ) /su ( 2s ↑s ( 𝑁 +s 1s ) ) ) ) |