Metamath Proof Explorer


Theorem pw2cutp1

Description: Simplify pw2cut in the case of successors of surreal integers. (Contributed by Scott Fenton, 11-Nov-2025)

Ref Expression
Hypotheses pw2cutp1.1 ( 𝜑𝐴 ∈ ℤs )
pw2cutp1.3 ( 𝜑𝑁 ∈ ℕ0s )
Assertion pw2cutp1 ( 𝜑 → ( { ( 𝐴 /su ( 2ss 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑁 ) ) } ) = ( ( ( 2s ·s 𝐴 ) +s 1s ) /su ( 2ss ( 𝑁 +s 1s ) ) ) )

Proof

Step Hyp Ref Expression
1 pw2cutp1.1 ( 𝜑𝐴 ∈ ℤs )
2 pw2cutp1.3 ( 𝜑𝑁 ∈ ℕ0s )
3 1 znod ( 𝜑𝐴 No )
4 1zs 1s ∈ ℤs
5 zaddscl ( ( 𝐴 ∈ ℤs ∧ 1s ∈ ℤs ) → ( 𝐴 +s 1s ) ∈ ℤs )
6 1 4 5 sylancl ( 𝜑 → ( 𝐴 +s 1s ) ∈ ℤs )
7 6 znod ( 𝜑 → ( 𝐴 +s 1s ) ∈ No )
8 3 sltp1d ( 𝜑𝐴 <s ( 𝐴 +s 1s ) )
9 2nns 2s ∈ ℕs
10 nnzs ( 2s ∈ ℕs → 2s ∈ ℤs )
11 9 10 ax-mp 2s ∈ ℤs
12 11 a1i ( 𝜑 → 2s ∈ ℤs )
13 12 1 zmulscld ( 𝜑 → ( 2s ·s 𝐴 ) ∈ ℤs )
14 zaddscl ( ( ( 2s ·s 𝐴 ) ∈ ℤs ∧ 1s ∈ ℤs ) → ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℤs )
15 13 4 14 sylancl ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℤs )
16 zscut ( ( ( 2s ·s 𝐴 ) +s 1s ) ∈ ℤs → ( ( 2s ·s 𝐴 ) +s 1s ) = ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) } ) )
17 15 16 syl ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) } ) )
18 no2times ( 𝐴 No → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) )
19 3 18 syl ( 𝜑 → ( 2s ·s 𝐴 ) = ( 𝐴 +s 𝐴 ) )
20 19 oveq1d ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( ( 𝐴 +s 𝐴 ) +s 1s ) )
21 1sno 1s No
22 21 a1i ( 𝜑 → 1s No )
23 3 3 22 addsassd ( 𝜑 → ( ( 𝐴 +s 𝐴 ) +s 1s ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) )
24 20 23 eqtrd ( 𝜑 → ( ( 2s ·s 𝐴 ) +s 1s ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) )
25 13 znod ( 𝜑 → ( 2s ·s 𝐴 ) ∈ No )
26 pncans ( ( ( 2s ·s 𝐴 ) ∈ No ∧ 1s No ) → ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) = ( 2s ·s 𝐴 ) )
27 25 21 26 sylancl ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) = ( 2s ·s 𝐴 ) )
28 27 sneqd ( 𝜑 → { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } = { ( 2s ·s 𝐴 ) } )
29 1p1e2s ( 1s +s 1s ) = 2s
30 2sno 2s No
31 mulsrid ( 2s No → ( 2s ·s 1s ) = 2s )
32 30 31 ax-mp ( 2s ·s 1s ) = 2s
33 29 32 eqtr4i ( 1s +s 1s ) = ( 2s ·s 1s )
34 33 oveq2i ( ( 2s ·s 𝐴 ) +s ( 1s +s 1s ) ) = ( ( 2s ·s 𝐴 ) +s ( 2s ·s 1s ) )
35 25 22 22 addsassd ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) = ( ( 2s ·s 𝐴 ) +s ( 1s +s 1s ) ) )
36 30 a1i ( 𝜑 → 2s No )
37 36 3 22 addsdid ( 𝜑 → ( 2s ·s ( 𝐴 +s 1s ) ) = ( ( 2s ·s 𝐴 ) +s ( 2s ·s 1s ) ) )
38 34 35 37 3eqtr4a ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) = ( 2s ·s ( 𝐴 +s 1s ) ) )
39 38 sneqd ( 𝜑 → { ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) } = { ( 2s ·s ( 𝐴 +s 1s ) ) } )
40 28 39 oveq12d ( 𝜑 → ( { ( ( ( 2s ·s 𝐴 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝐴 ) +s 1s ) +s 1s ) } ) = ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) )
41 17 24 40 3eqtr3rd ( 𝜑 → ( { ( 2s ·s 𝐴 ) } |s { ( 2s ·s ( 𝐴 +s 1s ) ) } ) = ( 𝐴 +s ( 𝐴 +s 1s ) ) )
42 3 7 2 8 41 pw2cut ( 𝜑 → ( { ( 𝐴 /su ( 2ss 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑁 ) ) } ) = ( ( 𝐴 +s ( 𝐴 +s 1s ) ) /su ( 2ss ( 𝑁 +s 1s ) ) ) )
43 24 oveq1d ( 𝜑 → ( ( ( 2s ·s 𝐴 ) +s 1s ) /su ( 2ss ( 𝑁 +s 1s ) ) ) = ( ( 𝐴 +s ( 𝐴 +s 1s ) ) /su ( 2ss ( 𝑁 +s 1s ) ) ) )
44 42 43 eqtr4d ( 𝜑 → ( { ( 𝐴 /su ( 2ss 𝑁 ) ) } |s { ( ( 𝐴 +s 1s ) /su ( 2ss 𝑁 ) ) } ) = ( ( ( 2s ·s 𝐴 ) +s 1s ) /su ( 2ss ( 𝑁 +s 1s ) ) ) )