| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2cutp1.1 |
|- ( ph -> A e. ZZ_s ) |
| 2 |
|
pw2cutp1.3 |
|- ( ph -> N e. NN0_s ) |
| 3 |
1
|
znod |
|- ( ph -> A e. No ) |
| 4 |
|
1zs |
|- 1s e. ZZ_s |
| 5 |
|
zaddscl |
|- ( ( A e. ZZ_s /\ 1s e. ZZ_s ) -> ( A +s 1s ) e. ZZ_s ) |
| 6 |
1 4 5
|
sylancl |
|- ( ph -> ( A +s 1s ) e. ZZ_s ) |
| 7 |
6
|
znod |
|- ( ph -> ( A +s 1s ) e. No ) |
| 8 |
3
|
sltp1d |
|- ( ph -> A |
| 9 |
|
2nns |
|- 2s e. NN_s |
| 10 |
|
nnzs |
|- ( 2s e. NN_s -> 2s e. ZZ_s ) |
| 11 |
9 10
|
ax-mp |
|- 2s e. ZZ_s |
| 12 |
11
|
a1i |
|- ( ph -> 2s e. ZZ_s ) |
| 13 |
12 1
|
zmulscld |
|- ( ph -> ( 2s x.s A ) e. ZZ_s ) |
| 14 |
|
zaddscl |
|- ( ( ( 2s x.s A ) e. ZZ_s /\ 1s e. ZZ_s ) -> ( ( 2s x.s A ) +s 1s ) e. ZZ_s ) |
| 15 |
13 4 14
|
sylancl |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) e. ZZ_s ) |
| 16 |
|
zscut |
|- ( ( ( 2s x.s A ) +s 1s ) e. ZZ_s -> ( ( 2s x.s A ) +s 1s ) = ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s { ( ( ( 2s x.s A ) +s 1s ) +s 1s ) } ) ) |
| 17 |
15 16
|
syl |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) = ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s { ( ( ( 2s x.s A ) +s 1s ) +s 1s ) } ) ) |
| 18 |
|
no2times |
|- ( A e. No -> ( 2s x.s A ) = ( A +s A ) ) |
| 19 |
3 18
|
syl |
|- ( ph -> ( 2s x.s A ) = ( A +s A ) ) |
| 20 |
19
|
oveq1d |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) = ( ( A +s A ) +s 1s ) ) |
| 21 |
|
1sno |
|- 1s e. No |
| 22 |
21
|
a1i |
|- ( ph -> 1s e. No ) |
| 23 |
3 3 22
|
addsassd |
|- ( ph -> ( ( A +s A ) +s 1s ) = ( A +s ( A +s 1s ) ) ) |
| 24 |
20 23
|
eqtrd |
|- ( ph -> ( ( 2s x.s A ) +s 1s ) = ( A +s ( A +s 1s ) ) ) |
| 25 |
13
|
znod |
|- ( ph -> ( 2s x.s A ) e. No ) |
| 26 |
|
pncans |
|- ( ( ( 2s x.s A ) e. No /\ 1s e. No ) -> ( ( ( 2s x.s A ) +s 1s ) -s 1s ) = ( 2s x.s A ) ) |
| 27 |
25 21 26
|
sylancl |
|- ( ph -> ( ( ( 2s x.s A ) +s 1s ) -s 1s ) = ( 2s x.s A ) ) |
| 28 |
27
|
sneqd |
|- ( ph -> { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } = { ( 2s x.s A ) } ) |
| 29 |
|
1p1e2s |
|- ( 1s +s 1s ) = 2s |
| 30 |
|
2sno |
|- 2s e. No |
| 31 |
|
mulsrid |
|- ( 2s e. No -> ( 2s x.s 1s ) = 2s ) |
| 32 |
30 31
|
ax-mp |
|- ( 2s x.s 1s ) = 2s |
| 33 |
29 32
|
eqtr4i |
|- ( 1s +s 1s ) = ( 2s x.s 1s ) |
| 34 |
33
|
oveq2i |
|- ( ( 2s x.s A ) +s ( 1s +s 1s ) ) = ( ( 2s x.s A ) +s ( 2s x.s 1s ) ) |
| 35 |
25 22 22
|
addsassd |
|- ( ph -> ( ( ( 2s x.s A ) +s 1s ) +s 1s ) = ( ( 2s x.s A ) +s ( 1s +s 1s ) ) ) |
| 36 |
30
|
a1i |
|- ( ph -> 2s e. No ) |
| 37 |
36 3 22
|
addsdid |
|- ( ph -> ( 2s x.s ( A +s 1s ) ) = ( ( 2s x.s A ) +s ( 2s x.s 1s ) ) ) |
| 38 |
34 35 37
|
3eqtr4a |
|- ( ph -> ( ( ( 2s x.s A ) +s 1s ) +s 1s ) = ( 2s x.s ( A +s 1s ) ) ) |
| 39 |
38
|
sneqd |
|- ( ph -> { ( ( ( 2s x.s A ) +s 1s ) +s 1s ) } = { ( 2s x.s ( A +s 1s ) ) } ) |
| 40 |
28 39
|
oveq12d |
|- ( ph -> ( { ( ( ( 2s x.s A ) +s 1s ) -s 1s ) } |s { ( ( ( 2s x.s A ) +s 1s ) +s 1s ) } ) = ( { ( 2s x.s A ) } |s { ( 2s x.s ( A +s 1s ) ) } ) ) |
| 41 |
17 24 40
|
3eqtr3rd |
|- ( ph -> ( { ( 2s x.s A ) } |s { ( 2s x.s ( A +s 1s ) ) } ) = ( A +s ( A +s 1s ) ) ) |
| 42 |
3 7 2 8 41
|
pw2cut |
|- ( ph -> ( { ( A /su ( 2s ^su N ) ) } |s { ( ( A +s 1s ) /su ( 2s ^su N ) ) } ) = ( ( A +s ( A +s 1s ) ) /su ( 2s ^su ( N +s 1s ) ) ) ) |
| 43 |
24
|
oveq1d |
|- ( ph -> ( ( ( 2s x.s A ) +s 1s ) /su ( 2s ^su ( N +s 1s ) ) ) = ( ( A +s ( A +s 1s ) ) /su ( 2s ^su ( N +s 1s ) ) ) ) |
| 44 |
42 43
|
eqtr4d |
|- ( ph -> ( { ( A /su ( 2s ^su N ) ) } |s { ( ( A +s 1s ) /su ( 2s ^su N ) ) } ) = ( ( ( 2s x.s A ) +s 1s ) /su ( 2s ^su ( N +s 1s ) ) ) ) |