Step |
Hyp |
Ref |
Expression |
1 |
|
divdivs1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ No ) |
2 |
|
divdivs1d.2 |
⊢ ( 𝜑 → 𝐵 ∈ No ) |
3 |
|
divdivs1d.3 |
⊢ ( 𝜑 → 𝐶 ∈ No ) |
4 |
|
divdivs1d.4 |
⊢ ( 𝜑 → 𝐵 ≠ 0s ) |
5 |
|
divdivs1d.5 |
⊢ ( 𝜑 → 𝐶 ≠ 0s ) |
6 |
2 3
|
mulscld |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) ∈ No ) |
7 |
2 3
|
mulsne0bd |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐶 ) ≠ 0s ↔ ( 𝐵 ≠ 0s ∧ 𝐶 ≠ 0s ) ) ) |
8 |
4 5 7
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐵 ·s 𝐶 ) ≠ 0s ) |
9 |
1 6 8
|
divscld |
⊢ ( 𝜑 → ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ∈ No ) |
10 |
2 3 9
|
mulsassd |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐶 ) ·s ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ) = ( 𝐵 ·s ( 𝐶 ·s ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ) ) ) |
11 |
1 6 8
|
divscan2d |
⊢ ( 𝜑 → ( ( 𝐵 ·s 𝐶 ) ·s ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ) = 𝐴 ) |
12 |
10 11
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐵 ·s ( 𝐶 ·s ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ) ) = 𝐴 ) |
13 |
3 9
|
mulscld |
⊢ ( 𝜑 → ( 𝐶 ·s ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ) ∈ No ) |
14 |
1 13 2 4
|
divsmuld |
⊢ ( 𝜑 → ( ( 𝐴 /su 𝐵 ) = ( 𝐶 ·s ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ) ↔ ( 𝐵 ·s ( 𝐶 ·s ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ) ) = 𝐴 ) ) |
15 |
12 14
|
mpbird |
⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) = ( 𝐶 ·s ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ) ) |
16 |
15
|
eqcomd |
⊢ ( 𝜑 → ( 𝐶 ·s ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ) = ( 𝐴 /su 𝐵 ) ) |
17 |
1 2 4
|
divscld |
⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No ) |
18 |
17 9 3 5
|
divsmuld |
⊢ ( 𝜑 → ( ( ( 𝐴 /su 𝐵 ) /su 𝐶 ) = ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ↔ ( 𝐶 ·s ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ) = ( 𝐴 /su 𝐵 ) ) ) |
19 |
16 18
|
mpbird |
⊢ ( 𝜑 → ( ( 𝐴 /su 𝐵 ) /su 𝐶 ) = ( 𝐴 /su ( 𝐵 ·s 𝐶 ) ) ) |