| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divdivs1d.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | divdivs1d.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | divdivs1d.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | divdivs1d.4 | ⊢ ( 𝜑  →  𝐵  ≠   0s  ) | 
						
							| 5 |  | divdivs1d.5 | ⊢ ( 𝜑  →  𝐶  ≠   0s  ) | 
						
							| 6 | 2 3 | mulscld | ⊢ ( 𝜑  →  ( 𝐵  ·s  𝐶 )  ∈   No  ) | 
						
							| 7 | 2 3 | mulsne0bd | ⊢ ( 𝜑  →  ( ( 𝐵  ·s  𝐶 )  ≠   0s   ↔  ( 𝐵  ≠   0s   ∧  𝐶  ≠   0s  ) ) ) | 
						
							| 8 | 4 5 7 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐵  ·s  𝐶 )  ≠   0s  ) | 
						
							| 9 | 1 6 8 | divscld | ⊢ ( 𝜑  →  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) )  ∈   No  ) | 
						
							| 10 | 2 3 9 | mulsassd | ⊢ ( 𝜑  →  ( ( 𝐵  ·s  𝐶 )  ·s  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) ) )  =  ( 𝐵  ·s  ( 𝐶  ·s  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) ) ) ) ) | 
						
							| 11 | 1 6 8 | divscan2d | ⊢ ( 𝜑  →  ( ( 𝐵  ·s  𝐶 )  ·s  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) ) )  =  𝐴 ) | 
						
							| 12 | 10 11 | eqtr3d | ⊢ ( 𝜑  →  ( 𝐵  ·s  ( 𝐶  ·s  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) ) ) )  =  𝐴 ) | 
						
							| 13 | 3 9 | mulscld | ⊢ ( 𝜑  →  ( 𝐶  ·s  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) ) )  ∈   No  ) | 
						
							| 14 | 1 13 2 4 | divsmuld | ⊢ ( 𝜑  →  ( ( 𝐴  /su  𝐵 )  =  ( 𝐶  ·s  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) ) )  ↔  ( 𝐵  ·s  ( 𝐶  ·s  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) ) ) )  =  𝐴 ) ) | 
						
							| 15 | 12 14 | mpbird | ⊢ ( 𝜑  →  ( 𝐴  /su  𝐵 )  =  ( 𝐶  ·s  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) ) ) ) | 
						
							| 16 | 15 | eqcomd | ⊢ ( 𝜑  →  ( 𝐶  ·s  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) ) )  =  ( 𝐴  /su  𝐵 ) ) | 
						
							| 17 | 1 2 4 | divscld | ⊢ ( 𝜑  →  ( 𝐴  /su  𝐵 )  ∈   No  ) | 
						
							| 18 | 17 9 3 5 | divsmuld | ⊢ ( 𝜑  →  ( ( ( 𝐴  /su  𝐵 )  /su  𝐶 )  =  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) )  ↔  ( 𝐶  ·s  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) ) )  =  ( 𝐴  /su  𝐵 ) ) ) | 
						
							| 19 | 16 18 | mpbird | ⊢ ( 𝜑  →  ( ( 𝐴  /su  𝐵 )  /su  𝐶 )  =  ( 𝐴  /su  ( 𝐵  ·s  𝐶 ) ) ) |