Metamath Proof Explorer


Theorem divdivs1d

Description: Surreal division into a fraction. (Contributed by Scott Fenton, 7-Aug-2025)

Ref Expression
Hypotheses divdivs1d.1 φ A No
divdivs1d.2 φ B No
divdivs1d.3 φ C No
divdivs1d.4 φ B 0 s
divdivs1d.5 φ C 0 s
Assertion divdivs1d φ A / su B / su C = A / su B s C

Proof

Step Hyp Ref Expression
1 divdivs1d.1 φ A No
2 divdivs1d.2 φ B No
3 divdivs1d.3 φ C No
4 divdivs1d.4 φ B 0 s
5 divdivs1d.5 φ C 0 s
6 2 3 mulscld φ B s C No
7 2 3 mulsne0bd φ B s C 0 s B 0 s C 0 s
8 4 5 7 mpbir2and φ B s C 0 s
9 1 6 8 divscld φ A / su B s C No
10 2 3 9 mulsassd φ B s C s A / su B s C = B s C s A / su B s C
11 1 6 8 divscan2d φ B s C s A / su B s C = A
12 10 11 eqtr3d φ B s C s A / su B s C = A
13 3 9 mulscld φ C s A / su B s C No
14 1 13 2 4 divsmuld φ A / su B = C s A / su B s C B s C s A / su B s C = A
15 12 14 mpbird φ A / su B = C s A / su B s C
16 15 eqcomd φ C s A / su B s C = A / su B
17 1 2 4 divscld φ A / su B No
18 17 9 3 5 divsmuld φ A / su B / su C = A / su B s C C s A / su B s C = A / su B
19 16 18 mpbird φ A / su B / su C = A / su B s C