| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0sno |
|- 0s e. No |
| 2 |
1
|
a1i |
|- ( T. -> 0s e. No ) |
| 3 |
|
1sno |
|- 1s e. No |
| 4 |
3
|
a1i |
|- ( T. -> 1s e. No ) |
| 5 |
|
0slt1s |
|- 0s |
| 6 |
5
|
a1i |
|- ( T. -> 0s |
| 7 |
2 4 6
|
ssltsn |
|- ( T. -> { 0s } < |
| 8 |
7
|
scutcld |
|- ( T. -> ( { 0s } |s { 1s } ) e. No ) |
| 9 |
8
|
mptru |
|- ( { 0s } |s { 1s } ) e. No |
| 10 |
|
no2times |
|- ( ( { 0s } |s { 1s } ) e. No -> ( 2s x.s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) ) |
| 11 |
9 10
|
ax-mp |
|- ( 2s x.s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) |
| 12 |
|
eqidd |
|- ( T. -> ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) ) |
| 13 |
7 7 12 12
|
addsunif |
|- ( T. -> ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = ( ( { x | E. y e. { 0s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 0s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) |s ( { x | E. y e. { 1s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 1s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) ) ) |
| 14 |
13
|
mptru |
|- ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = ( ( { x | E. y e. { 0s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 0s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) |s ( { x | E. y e. { 1s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 1s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) ) |
| 15 |
1
|
elexi |
|- 0s e. _V |
| 16 |
|
oveq1 |
|- ( y = 0s -> ( y +s ( { 0s } |s { 1s } ) ) = ( 0s +s ( { 0s } |s { 1s } ) ) ) |
| 17 |
16
|
eqeq2d |
|- ( y = 0s -> ( x = ( y +s ( { 0s } |s { 1s } ) ) <-> x = ( 0s +s ( { 0s } |s { 1s } ) ) ) ) |
| 18 |
15 17
|
rexsn |
|- ( E. y e. { 0s } x = ( y +s ( { 0s } |s { 1s } ) ) <-> x = ( 0s +s ( { 0s } |s { 1s } ) ) ) |
| 19 |
|
addslid |
|- ( ( { 0s } |s { 1s } ) e. No -> ( 0s +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } ) ) |
| 20 |
9 19
|
ax-mp |
|- ( 0s +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } ) |
| 21 |
20
|
eqeq2i |
|- ( x = ( 0s +s ( { 0s } |s { 1s } ) ) <-> x = ( { 0s } |s { 1s } ) ) |
| 22 |
18 21
|
bitri |
|- ( E. y e. { 0s } x = ( y +s ( { 0s } |s { 1s } ) ) <-> x = ( { 0s } |s { 1s } ) ) |
| 23 |
22
|
abbii |
|- { x | E. y e. { 0s } x = ( y +s ( { 0s } |s { 1s } ) ) } = { x | x = ( { 0s } |s { 1s } ) } |
| 24 |
|
df-sn |
|- { ( { 0s } |s { 1s } ) } = { x | x = ( { 0s } |s { 1s } ) } |
| 25 |
23 24
|
eqtr4i |
|- { x | E. y e. { 0s } x = ( y +s ( { 0s } |s { 1s } ) ) } = { ( { 0s } |s { 1s } ) } |
| 26 |
|
oveq2 |
|- ( y = 0s -> ( ( { 0s } |s { 1s } ) +s y ) = ( ( { 0s } |s { 1s } ) +s 0s ) ) |
| 27 |
26
|
eqeq2d |
|- ( y = 0s -> ( x = ( ( { 0s } |s { 1s } ) +s y ) <-> x = ( ( { 0s } |s { 1s } ) +s 0s ) ) ) |
| 28 |
15 27
|
rexsn |
|- ( E. y e. { 0s } x = ( ( { 0s } |s { 1s } ) +s y ) <-> x = ( ( { 0s } |s { 1s } ) +s 0s ) ) |
| 29 |
|
addsrid |
|- ( ( { 0s } |s { 1s } ) e. No -> ( ( { 0s } |s { 1s } ) +s 0s ) = ( { 0s } |s { 1s } ) ) |
| 30 |
9 29
|
ax-mp |
|- ( ( { 0s } |s { 1s } ) +s 0s ) = ( { 0s } |s { 1s } ) |
| 31 |
30
|
eqeq2i |
|- ( x = ( ( { 0s } |s { 1s } ) +s 0s ) <-> x = ( { 0s } |s { 1s } ) ) |
| 32 |
28 31
|
bitri |
|- ( E. y e. { 0s } x = ( ( { 0s } |s { 1s } ) +s y ) <-> x = ( { 0s } |s { 1s } ) ) |
| 33 |
32
|
abbii |
|- { x | E. y e. { 0s } x = ( ( { 0s } |s { 1s } ) +s y ) } = { x | x = ( { 0s } |s { 1s } ) } |
| 34 |
33 24
|
eqtr4i |
|- { x | E. y e. { 0s } x = ( ( { 0s } |s { 1s } ) +s y ) } = { ( { 0s } |s { 1s } ) } |
| 35 |
25 34
|
uneq12i |
|- ( { x | E. y e. { 0s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 0s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) = ( { ( { 0s } |s { 1s } ) } u. { ( { 0s } |s { 1s } ) } ) |
| 36 |
|
unidm |
|- ( { ( { 0s } |s { 1s } ) } u. { ( { 0s } |s { 1s } ) } ) = { ( { 0s } |s { 1s } ) } |
| 37 |
35 36
|
eqtri |
|- ( { x | E. y e. { 0s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 0s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) = { ( { 0s } |s { 1s } ) } |
| 38 |
3
|
elexi |
|- 1s e. _V |
| 39 |
|
oveq1 |
|- ( y = 1s -> ( y +s ( { 0s } |s { 1s } ) ) = ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 40 |
39
|
eqeq2d |
|- ( y = 1s -> ( x = ( y +s ( { 0s } |s { 1s } ) ) <-> x = ( 1s +s ( { 0s } |s { 1s } ) ) ) ) |
| 41 |
38 40
|
rexsn |
|- ( E. y e. { 1s } x = ( y +s ( { 0s } |s { 1s } ) ) <-> x = ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 42 |
41
|
abbii |
|- { x | E. y e. { 1s } x = ( y +s ( { 0s } |s { 1s } ) ) } = { x | x = ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 43 |
|
df-sn |
|- { ( 1s +s ( { 0s } |s { 1s } ) ) } = { x | x = ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 44 |
42 43
|
eqtr4i |
|- { x | E. y e. { 1s } x = ( y +s ( { 0s } |s { 1s } ) ) } = { ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 45 |
|
oveq2 |
|- ( y = 1s -> ( ( { 0s } |s { 1s } ) +s y ) = ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 46 |
45
|
eqeq2d |
|- ( y = 1s -> ( x = ( ( { 0s } |s { 1s } ) +s y ) <-> x = ( ( { 0s } |s { 1s } ) +s 1s ) ) ) |
| 47 |
38 46
|
rexsn |
|- ( E. y e. { 1s } x = ( ( { 0s } |s { 1s } ) +s y ) <-> x = ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 48 |
|
addscom |
|- ( ( ( { 0s } |s { 1s } ) e. No /\ 1s e. No ) -> ( ( { 0s } |s { 1s } ) +s 1s ) = ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 49 |
9 3 48
|
mp2an |
|- ( ( { 0s } |s { 1s } ) +s 1s ) = ( 1s +s ( { 0s } |s { 1s } ) ) |
| 50 |
49
|
eqeq2i |
|- ( x = ( ( { 0s } |s { 1s } ) +s 1s ) <-> x = ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 51 |
47 50
|
bitri |
|- ( E. y e. { 1s } x = ( ( { 0s } |s { 1s } ) +s y ) <-> x = ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 52 |
51
|
abbii |
|- { x | E. y e. { 1s } x = ( ( { 0s } |s { 1s } ) +s y ) } = { x | x = ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 53 |
52 43
|
eqtr4i |
|- { x | E. y e. { 1s } x = ( ( { 0s } |s { 1s } ) +s y ) } = { ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 54 |
44 53
|
uneq12i |
|- ( { x | E. y e. { 1s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 1s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) = ( { ( 1s +s ( { 0s } |s { 1s } ) ) } u. { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 55 |
|
unidm |
|- ( { ( 1s +s ( { 0s } |s { 1s } ) ) } u. { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = { ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 56 |
54 55
|
eqtri |
|- ( { x | E. y e. { 1s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 1s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) = { ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 57 |
37 56
|
oveq12i |
|- ( ( { x | E. y e. { 0s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 0s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) |s ( { x | E. y e. { 1s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 1s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) ) = ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 58 |
|
ral0 |
|- A. x e. (/) ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 59 |
|
scutcut |
|- ( { 0s } < ( ( { 0s } |s { 1s } ) e. No /\ { 0s } < |
| 60 |
7 59
|
syl |
|- ( T. -> ( ( { 0s } |s { 1s } ) e. No /\ { 0s } < |
| 61 |
60
|
simp3d |
|- ( T. -> { ( { 0s } |s { 1s } ) } < |
| 62 |
|
ovex |
|- ( { 0s } |s { 1s } ) e. _V |
| 63 |
62
|
snid |
|- ( { 0s } |s { 1s } ) e. { ( { 0s } |s { 1s } ) } |
| 64 |
63
|
a1i |
|- ( T. -> ( { 0s } |s { 1s } ) e. { ( { 0s } |s { 1s } ) } ) |
| 65 |
38
|
snid |
|- 1s e. { 1s } |
| 66 |
65
|
a1i |
|- ( T. -> 1s e. { 1s } ) |
| 67 |
61 64 66
|
ssltsepcd |
|- ( T. -> ( { 0s } |s { 1s } ) |
| 68 |
67
|
mptru |
|- ( { 0s } |s { 1s } ) |
| 69 |
|
breq1 |
|- ( y = ( { 0s } |s { 1s } ) -> ( y ( { 0s } |s { 1s } ) |
| 70 |
62 69
|
ralsn |
|- ( A. y e. { ( { 0s } |s { 1s } ) } y ( { 0s } |s { 1s } ) |
| 71 |
68 70
|
mpbir |
|- A. y e. { ( { 0s } |s { 1s } ) } y |
| 72 |
4 8
|
addscld |
|- ( T. -> ( 1s +s ( { 0s } |s { 1s } ) ) e. No ) |
| 73 |
8
|
sltp1d |
|- ( T. -> ( { 0s } |s { 1s } ) |
| 74 |
73 49
|
breqtrdi |
|- ( T. -> ( { 0s } |s { 1s } ) |
| 75 |
8 72 74
|
ssltsn |
|- ( T. -> { ( { 0s } |s { 1s } ) } < |
| 76 |
75
|
mptru |
|- { ( { 0s } |s { 1s } ) } < |
| 77 |
|
snelpwi |
|- ( 0s e. No -> { 0s } e. ~P No ) |
| 78 |
1 77
|
ax-mp |
|- { 0s } e. ~P No |
| 79 |
|
nulssgt |
|- ( { 0s } e. ~P No -> { 0s } < |
| 80 |
78 79
|
ax-mp |
|- { 0s } < |
| 81 |
|
eqid |
|- ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 82 |
|
df-1s |
|- 1s = ( { 0s } |s (/) ) |
| 83 |
|
slerec |
|- ( ( ( { ( { 0s } |s { 1s } ) } < ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <_s 1s <-> ( A. x e. (/) ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 84 |
76 80 81 82 83
|
mp4an |
|- ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <_s 1s <-> ( A. x e. (/) ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 85 |
58 71 84
|
mpbir2an |
|- ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <_s 1s |
| 86 |
60
|
simp2d |
|- ( T. -> { 0s } < |
| 87 |
15
|
snid |
|- 0s e. { 0s } |
| 88 |
87
|
a1i |
|- ( T. -> 0s e. { 0s } ) |
| 89 |
86 88 64
|
ssltsepcd |
|- ( T. -> 0s |
| 90 |
89
|
mptru |
|- 0s |
| 91 |
|
sltadd1 |
|- ( ( 0s e. No /\ ( { 0s } |s { 1s } ) e. No /\ 1s e. No ) -> ( 0s ( 0s +s 1s ) |
| 92 |
1 9 3 91
|
mp3an |
|- ( 0s ( 0s +s 1s ) |
| 93 |
90 92
|
mpbi |
|- ( 0s +s 1s ) |
| 94 |
|
addslid |
|- ( 1s e. No -> ( 0s +s 1s ) = 1s ) |
| 95 |
3 94
|
ax-mp |
|- ( 0s +s 1s ) = 1s |
| 96 |
93 95 49
|
3brtr3i |
|- 1s |
| 97 |
|
ovex |
|- ( 1s +s ( { 0s } |s { 1s } ) ) e. _V |
| 98 |
|
breq2 |
|- ( x = ( 1s +s ( { 0s } |s { 1s } ) ) -> ( 1s 1s |
| 99 |
97 98
|
ralsn |
|- ( A. x e. { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s 1s |
| 100 |
96 99
|
mpbir |
|- A. x e. { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s |
| 101 |
75
|
scutcld |
|- ( T. -> ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) e. No ) |
| 102 |
|
scutcut |
|- ( { ( { 0s } |s { 1s } ) } < ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) e. No /\ { ( { 0s } |s { 1s } ) } < |
| 103 |
75 102
|
syl |
|- ( T. -> ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) e. No /\ { ( { 0s } |s { 1s } ) } < |
| 104 |
103
|
simp2d |
|- ( T. -> { ( { 0s } |s { 1s } ) } < |
| 105 |
|
ovex |
|- ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) e. _V |
| 106 |
105
|
snid |
|- ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) e. { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } |
| 107 |
106
|
a1i |
|- ( T. -> ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) e. { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } ) |
| 108 |
104 64 107
|
ssltsepcd |
|- ( T. -> ( { 0s } |s { 1s } ) |
| 109 |
2 8 101 89 108
|
slttrd |
|- ( T. -> 0s |
| 110 |
109
|
mptru |
|- 0s |
| 111 |
|
breq1 |
|- ( y = 0s -> ( y 0s |
| 112 |
15 111
|
ralsn |
|- ( A. y e. { 0s } y 0s |
| 113 |
110 112
|
mpbir |
|- A. y e. { 0s } y |
| 114 |
|
slerec |
|- ( ( ( { 0s } < ( 1s <_s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <-> ( A. x e. { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s |
| 115 |
80 76 82 81 114
|
mp4an |
|- ( 1s <_s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <-> ( A. x e. { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s |
| 116 |
100 113 115
|
mpbir2an |
|- 1s <_s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 117 |
101
|
mptru |
|- ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) e. No |
| 118 |
|
sletri3 |
|- ( ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) e. No /\ 1s e. No ) -> ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = 1s <-> ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <_s 1s /\ 1s <_s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) ) ) |
| 119 |
117 3 118
|
mp2an |
|- ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = 1s <-> ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <_s 1s /\ 1s <_s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) ) |
| 120 |
85 116 119
|
mpbir2an |
|- ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = 1s |
| 121 |
57 120
|
eqtri |
|- ( ( { x | E. y e. { 0s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 0s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) |s ( { x | E. y e. { 1s } x = ( y +s ( { 0s } |s { 1s } ) ) } u. { x | E. y e. { 1s } x = ( ( { 0s } |s { 1s } ) +s y ) } ) ) = 1s |
| 122 |
14 121
|
eqtri |
|- ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = 1s |
| 123 |
11 122
|
eqtri |
|- ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s |