Metamath Proof Explorer


Theorem twocut

Description: Two times the cut of zero and one is one. (Contributed by Scott Fenton, 5-Sep-2025)

Ref Expression
Assertion twocut Could not format assertion : No typesetting found for |- ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s with typecode |-

Proof

Step Hyp Ref Expression
1 0sno 0 s No
2 1 a1i 0 s No
3 1sno 1 s No
4 3 a1i 1 s No
5 0slt1s 0 s < s 1 s
6 5 a1i 0 s < s 1 s
7 2 4 6 ssltsn 0 s s 1 s
8 7 scutcld 0 s | s 1 s No
9 8 mptru 0 s | s 1 s No
10 no2times Could not format ( ( { 0s } |s { 1s } ) e. No -> ( 2s x.s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) ) : No typesetting found for |- ( ( { 0s } |s { 1s } ) e. No -> ( 2s x.s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) ) with typecode |-
11 9 10 ax-mp Could not format ( 2s x.s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) : No typesetting found for |- ( 2s x.s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) with typecode |-
12 eqidd 0 s | s 1 s = 0 s | s 1 s
13 7 7 12 12 addsunif 0 s | s 1 s + s 0 s | s 1 s = x | y 0 s x = y + s 0 s | s 1 s x | y 0 s x = 0 s | s 1 s + s y | s x | y 1 s x = y + s 0 s | s 1 s x | y 1 s x = 0 s | s 1 s + s y
14 13 mptru 0 s | s 1 s + s 0 s | s 1 s = x | y 0 s x = y + s 0 s | s 1 s x | y 0 s x = 0 s | s 1 s + s y | s x | y 1 s x = y + s 0 s | s 1 s x | y 1 s x = 0 s | s 1 s + s y
15 1 elexi 0 s V
16 oveq1 y = 0 s y + s 0 s | s 1 s = 0 s + s 0 s | s 1 s
17 16 eqeq2d y = 0 s x = y + s 0 s | s 1 s x = 0 s + s 0 s | s 1 s
18 15 17 rexsn y 0 s x = y + s 0 s | s 1 s x = 0 s + s 0 s | s 1 s
19 addslid 0 s | s 1 s No 0 s + s 0 s | s 1 s = 0 s | s 1 s
20 9 19 ax-mp 0 s + s 0 s | s 1 s = 0 s | s 1 s
21 20 eqeq2i x = 0 s + s 0 s | s 1 s x = 0 s | s 1 s
22 18 21 bitri y 0 s x = y + s 0 s | s 1 s x = 0 s | s 1 s
23 22 abbii x | y 0 s x = y + s 0 s | s 1 s = x | x = 0 s | s 1 s
24 df-sn 0 s | s 1 s = x | x = 0 s | s 1 s
25 23 24 eqtr4i x | y 0 s x = y + s 0 s | s 1 s = 0 s | s 1 s
26 oveq2 y = 0 s 0 s | s 1 s + s y = 0 s | s 1 s + s 0 s
27 26 eqeq2d y = 0 s x = 0 s | s 1 s + s y x = 0 s | s 1 s + s 0 s
28 15 27 rexsn y 0 s x = 0 s | s 1 s + s y x = 0 s | s 1 s + s 0 s
29 addsrid 0 s | s 1 s No 0 s | s 1 s + s 0 s = 0 s | s 1 s
30 9 29 ax-mp 0 s | s 1 s + s 0 s = 0 s | s 1 s
31 30 eqeq2i x = 0 s | s 1 s + s 0 s x = 0 s | s 1 s
32 28 31 bitri y 0 s x = 0 s | s 1 s + s y x = 0 s | s 1 s
33 32 abbii x | y 0 s x = 0 s | s 1 s + s y = x | x = 0 s | s 1 s
34 33 24 eqtr4i x | y 0 s x = 0 s | s 1 s + s y = 0 s | s 1 s
35 25 34 uneq12i x | y 0 s x = y + s 0 s | s 1 s x | y 0 s x = 0 s | s 1 s + s y = 0 s | s 1 s 0 s | s 1 s
36 unidm 0 s | s 1 s 0 s | s 1 s = 0 s | s 1 s
37 35 36 eqtri x | y 0 s x = y + s 0 s | s 1 s x | y 0 s x = 0 s | s 1 s + s y = 0 s | s 1 s
38 3 elexi 1 s V
39 oveq1 y = 1 s y + s 0 s | s 1 s = 1 s + s 0 s | s 1 s
40 39 eqeq2d y = 1 s x = y + s 0 s | s 1 s x = 1 s + s 0 s | s 1 s
41 38 40 rexsn y 1 s x = y + s 0 s | s 1 s x = 1 s + s 0 s | s 1 s
42 41 abbii x | y 1 s x = y + s 0 s | s 1 s = x | x = 1 s + s 0 s | s 1 s
43 df-sn 1 s + s 0 s | s 1 s = x | x = 1 s + s 0 s | s 1 s
44 42 43 eqtr4i x | y 1 s x = y + s 0 s | s 1 s = 1 s + s 0 s | s 1 s
45 oveq2 y = 1 s 0 s | s 1 s + s y = 0 s | s 1 s + s 1 s
46 45 eqeq2d y = 1 s x = 0 s | s 1 s + s y x = 0 s | s 1 s + s 1 s
47 38 46 rexsn y 1 s x = 0 s | s 1 s + s y x = 0 s | s 1 s + s 1 s
48 addscom 0 s | s 1 s No 1 s No 0 s | s 1 s + s 1 s = 1 s + s 0 s | s 1 s
49 9 3 48 mp2an 0 s | s 1 s + s 1 s = 1 s + s 0 s | s 1 s
50 49 eqeq2i x = 0 s | s 1 s + s 1 s x = 1 s + s 0 s | s 1 s
51 47 50 bitri y 1 s x = 0 s | s 1 s + s y x = 1 s + s 0 s | s 1 s
52 51 abbii x | y 1 s x = 0 s | s 1 s + s y = x | x = 1 s + s 0 s | s 1 s
53 52 43 eqtr4i x | y 1 s x = 0 s | s 1 s + s y = 1 s + s 0 s | s 1 s
54 44 53 uneq12i x | y 1 s x = y + s 0 s | s 1 s x | y 1 s x = 0 s | s 1 s + s y = 1 s + s 0 s | s 1 s 1 s + s 0 s | s 1 s
55 unidm 1 s + s 0 s | s 1 s 1 s + s 0 s | s 1 s = 1 s + s 0 s | s 1 s
56 54 55 eqtri x | y 1 s x = y + s 0 s | s 1 s x | y 1 s x = 0 s | s 1 s + s y = 1 s + s 0 s | s 1 s
57 37 56 oveq12i x | y 0 s x = y + s 0 s | s 1 s x | y 0 s x = 0 s | s 1 s + s y | s x | y 1 s x = y + s 0 s | s 1 s x | y 1 s x = 0 s | s 1 s + s y = 0 s | s 1 s | s 1 s + s 0 s | s 1 s
58 ral0 x 0 s | s 1 s | s 1 s + s 0 s | s 1 s < s x
59 scutcut 0 s s 1 s 0 s | s 1 s No 0 s s 0 s | s 1 s 0 s | s 1 s s 1 s
60 7 59 syl 0 s | s 1 s No 0 s s 0 s | s 1 s 0 s | s 1 s s 1 s
61 60 simp3d 0 s | s 1 s s 1 s
62 ovex 0 s | s 1 s V
63 62 snid 0 s | s 1 s 0 s | s 1 s
64 63 a1i 0 s | s 1 s 0 s | s 1 s
65 38 snid 1 s 1 s
66 65 a1i 1 s 1 s
67 61 64 66 ssltsepcd 0 s | s 1 s < s 1 s
68 67 mptru 0 s | s 1 s < s 1 s
69 breq1 y = 0 s | s 1 s y < s 1 s 0 s | s 1 s < s 1 s
70 62 69 ralsn y 0 s | s 1 s y < s 1 s 0 s | s 1 s < s 1 s
71 68 70 mpbir y 0 s | s 1 s y < s 1 s
72 4 8 addscld 1 s + s 0 s | s 1 s No
73 8 sltp1d 0 s | s 1 s < s 0 s | s 1 s + s 1 s
74 73 49 breqtrdi 0 s | s 1 s < s 1 s + s 0 s | s 1 s
75 8 72 74 ssltsn 0 s | s 1 s s 1 s + s 0 s | s 1 s
76 75 mptru 0 s | s 1 s s 1 s + s 0 s | s 1 s
77 snelpwi 0 s No 0 s 𝒫 No
78 1 77 ax-mp 0 s 𝒫 No
79 nulssgt 0 s 𝒫 No 0 s s
80 78 79 ax-mp 0 s s
81 eqid 0 s | s 1 s | s 1 s + s 0 s | s 1 s = 0 s | s 1 s | s 1 s + s 0 s | s 1 s
82 df-1s 1 s = 0 s | s
83 slerec 0 s | s 1 s s 1 s + s 0 s | s 1 s 0 s s 0 s | s 1 s | s 1 s + s 0 s | s 1 s = 0 s | s 1 s | s 1 s + s 0 s | s 1 s 1 s = 0 s | s 0 s | s 1 s | s 1 s + s 0 s | s 1 s s 1 s x 0 s | s 1 s | s 1 s + s 0 s | s 1 s < s x y 0 s | s 1 s y < s 1 s
84 76 80 81 82 83 mp4an 0 s | s 1 s | s 1 s + s 0 s | s 1 s s 1 s x 0 s | s 1 s | s 1 s + s 0 s | s 1 s < s x y 0 s | s 1 s y < s 1 s
85 58 71 84 mpbir2an 0 s | s 1 s | s 1 s + s 0 s | s 1 s s 1 s
86 60 simp2d 0 s s 0 s | s 1 s
87 15 snid 0 s 0 s
88 87 a1i 0 s 0 s
89 86 88 64 ssltsepcd 0 s < s 0 s | s 1 s
90 89 mptru 0 s < s 0 s | s 1 s
91 sltadd1 0 s No 0 s | s 1 s No 1 s No 0 s < s 0 s | s 1 s 0 s + s 1 s < s 0 s | s 1 s + s 1 s
92 1 9 3 91 mp3an 0 s < s 0 s | s 1 s 0 s + s 1 s < s 0 s | s 1 s + s 1 s
93 90 92 mpbi 0 s + s 1 s < s 0 s | s 1 s + s 1 s
94 addslid 1 s No 0 s + s 1 s = 1 s
95 3 94 ax-mp 0 s + s 1 s = 1 s
96 93 95 49 3brtr3i 1 s < s 1 s + s 0 s | s 1 s
97 ovex 1 s + s 0 s | s 1 s V
98 breq2 x = 1 s + s 0 s | s 1 s 1 s < s x 1 s < s 1 s + s 0 s | s 1 s
99 97 98 ralsn x 1 s + s 0 s | s 1 s 1 s < s x 1 s < s 1 s + s 0 s | s 1 s
100 96 99 mpbir x 1 s + s 0 s | s 1 s 1 s < s x
101 75 scutcld 0 s | s 1 s | s 1 s + s 0 s | s 1 s No
102 scutcut 0 s | s 1 s s 1 s + s 0 s | s 1 s 0 s | s 1 s | s 1 s + s 0 s | s 1 s No 0 s | s 1 s s 0 s | s 1 s | s 1 s + s 0 s | s 1 s 0 s | s 1 s | s 1 s + s 0 s | s 1 s s 1 s + s 0 s | s 1 s
103 75 102 syl 0 s | s 1 s | s 1 s + s 0 s | s 1 s No 0 s | s 1 s s 0 s | s 1 s | s 1 s + s 0 s | s 1 s 0 s | s 1 s | s 1 s + s 0 s | s 1 s s 1 s + s 0 s | s 1 s
104 103 simp2d 0 s | s 1 s s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
105 ovex 0 s | s 1 s | s 1 s + s 0 s | s 1 s V
106 105 snid 0 s | s 1 s | s 1 s + s 0 s | s 1 s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
107 106 a1i 0 s | s 1 s | s 1 s + s 0 s | s 1 s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
108 104 64 107 ssltsepcd 0 s | s 1 s < s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
109 2 8 101 89 108 slttrd 0 s < s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
110 109 mptru 0 s < s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
111 breq1 y = 0 s y < s 0 s | s 1 s | s 1 s + s 0 s | s 1 s 0 s < s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
112 15 111 ralsn y 0 s y < s 0 s | s 1 s | s 1 s + s 0 s | s 1 s 0 s < s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
113 110 112 mpbir y 0 s y < s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
114 slerec 0 s s 0 s | s 1 s s 1 s + s 0 s | s 1 s 1 s = 0 s | s 0 s | s 1 s | s 1 s + s 0 s | s 1 s = 0 s | s 1 s | s 1 s + s 0 s | s 1 s 1 s s 0 s | s 1 s | s 1 s + s 0 s | s 1 s x 1 s + s 0 s | s 1 s 1 s < s x y 0 s y < s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
115 80 76 82 81 114 mp4an 1 s s 0 s | s 1 s | s 1 s + s 0 s | s 1 s x 1 s + s 0 s | s 1 s 1 s < s x y 0 s y < s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
116 100 113 115 mpbir2an 1 s s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
117 101 mptru 0 s | s 1 s | s 1 s + s 0 s | s 1 s No
118 sletri3 0 s | s 1 s | s 1 s + s 0 s | s 1 s No 1 s No 0 s | s 1 s | s 1 s + s 0 s | s 1 s = 1 s 0 s | s 1 s | s 1 s + s 0 s | s 1 s s 1 s 1 s s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
119 117 3 118 mp2an 0 s | s 1 s | s 1 s + s 0 s | s 1 s = 1 s 0 s | s 1 s | s 1 s + s 0 s | s 1 s s 1 s 1 s s 0 s | s 1 s | s 1 s + s 0 s | s 1 s
120 85 116 119 mpbir2an 0 s | s 1 s | s 1 s + s 0 s | s 1 s = 1 s
121 57 120 eqtri x | y 0 s x = y + s 0 s | s 1 s x | y 0 s x = 0 s | s 1 s + s y | s x | y 1 s x = y + s 0 s | s 1 s x | y 1 s x = 0 s | s 1 s + s y = 1 s
122 14 121 eqtri 0 s | s 1 s + s 0 s | s 1 s = 1 s
123 11 122 eqtri Could not format ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s : No typesetting found for |- ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s with typecode |-