Metamath Proof Explorer


Theorem twocut

Description: Two times the cut of zero and one is one. (Contributed by Scott Fenton, 5-Sep-2025)

Ref Expression
Assertion twocut ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s

Proof

Step Hyp Ref Expression
1 0sno 0s No
2 1 a1i ( ⊤ → 0s No )
3 1sno 1s No
4 3 a1i ( ⊤ → 1s No )
5 0slt1s 0s <s 1s
6 5 a1i ( ⊤ → 0s <s 1s )
7 2 4 6 ssltsn ( ⊤ → { 0s } <<s { 1s } )
8 7 scutcld ( ⊤ → ( { 0s } |s { 1s } ) ∈ No )
9 8 mptru ( { 0s } |s { 1s } ) ∈ No
10 no2times ( ( { 0s } |s { 1s } ) ∈ No → ( 2s ·s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) )
11 9 10 ax-mp ( 2s ·s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) )
12 eqidd ( ⊤ → ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) )
13 7 7 12 12 addsunif ( ⊤ → ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) )
14 13 mptru ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) )
15 1 elexi 0s ∈ V
16 oveq1 ( 𝑦 = 0s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( 0s +s ( { 0s } |s { 1s } ) ) )
17 16 eqeq2d ( 𝑦 = 0s → ( 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( 0s +s ( { 0s } |s { 1s } ) ) ) )
18 15 17 rexsn ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( 0s +s ( { 0s } |s { 1s } ) ) )
19 addslid ( ( { 0s } |s { 1s } ) ∈ No → ( 0s +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } ) )
20 9 19 ax-mp ( 0s +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } )
21 20 eqeq2i ( 𝑥 = ( 0s +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( { 0s } |s { 1s } ) )
22 18 21 bitri ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( { 0s } |s { 1s } ) )
23 22 abbii { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { 𝑥𝑥 = ( { 0s } |s { 1s } ) }
24 df-sn { ( { 0s } |s { 1s } ) } = { 𝑥𝑥 = ( { 0s } |s { 1s } ) }
25 23 24 eqtr4i { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { ( { 0s } |s { 1s } ) }
26 oveq2 ( 𝑦 = 0s → ( ( { 0s } |s { 1s } ) +s 𝑦 ) = ( ( { 0s } |s { 1s } ) +s 0s ) )
27 26 eqeq2d ( 𝑦 = 0s → ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 0s ) ) )
28 15 27 rexsn ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 0s ) )
29 addsrid ( ( { 0s } |s { 1s } ) ∈ No → ( ( { 0s } |s { 1s } ) +s 0s ) = ( { 0s } |s { 1s } ) )
30 9 29 ax-mp ( ( { 0s } |s { 1s } ) +s 0s ) = ( { 0s } |s { 1s } )
31 30 eqeq2i ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 0s ) ↔ 𝑥 = ( { 0s } |s { 1s } ) )
32 28 31 bitri ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( { 0s } |s { 1s } ) )
33 32 abbii { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { 𝑥𝑥 = ( { 0s } |s { 1s } ) }
34 33 24 eqtr4i { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { ( { 0s } |s { 1s } ) }
35 25 34 uneq12i ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = ( { ( { 0s } |s { 1s } ) } ∪ { ( { 0s } |s { 1s } ) } )
36 unidm ( { ( { 0s } |s { 1s } ) } ∪ { ( { 0s } |s { 1s } ) } ) = { ( { 0s } |s { 1s } ) }
37 35 36 eqtri ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = { ( { 0s } |s { 1s } ) }
38 3 elexi 1s ∈ V
39 oveq1 ( 𝑦 = 1s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( 1s +s ( { 0s } |s { 1s } ) ) )
40 39 eqeq2d ( 𝑦 = 1s → ( 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) ) )
41 38 40 rexsn ( ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) )
42 41 abbii { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { 𝑥𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) }
43 df-sn { ( 1s +s ( { 0s } |s { 1s } ) ) } = { 𝑥𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) }
44 42 43 eqtr4i { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { ( 1s +s ( { 0s } |s { 1s } ) ) }
45 oveq2 ( 𝑦 = 1s → ( ( { 0s } |s { 1s } ) +s 𝑦 ) = ( ( { 0s } |s { 1s } ) +s 1s ) )
46 45 eqeq2d ( 𝑦 = 1s → ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) ) )
47 38 46 rexsn ( ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) )
48 addscom ( ( ( { 0s } |s { 1s } ) ∈ No ∧ 1s No ) → ( ( { 0s } |s { 1s } ) +s 1s ) = ( 1s +s ( { 0s } |s { 1s } ) ) )
49 9 3 48 mp2an ( ( { 0s } |s { 1s } ) +s 1s ) = ( 1s +s ( { 0s } |s { 1s } ) )
50 49 eqeq2i ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) ↔ 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) )
51 47 50 bitri ( ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) )
52 51 abbii { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { 𝑥𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) }
53 52 43 eqtr4i { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { ( 1s +s ( { 0s } |s { 1s } ) ) }
54 44 53 uneq12i ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = ( { ( 1s +s ( { 0s } |s { 1s } ) ) } ∪ { ( 1s +s ( { 0s } |s { 1s } ) ) } )
55 unidm ( { ( 1s +s ( { 0s } |s { 1s } ) ) } ∪ { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = { ( 1s +s ( { 0s } |s { 1s } ) ) }
56 54 55 eqtri ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = { ( 1s +s ( { 0s } |s { 1s } ) ) }
57 37 56 oveq12i ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) = ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } )
58 ral0 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <s 𝑥
59 scutcut ( { 0s } <<s { 1s } → ( ( { 0s } |s { 1s } ) ∈ No ∧ { 0s } <<s { ( { 0s } |s { 1s } ) } ∧ { ( { 0s } |s { 1s } ) } <<s { 1s } ) )
60 7 59 syl ( ⊤ → ( ( { 0s } |s { 1s } ) ∈ No ∧ { 0s } <<s { ( { 0s } |s { 1s } ) } ∧ { ( { 0s } |s { 1s } ) } <<s { 1s } ) )
61 60 simp3d ( ⊤ → { ( { 0s } |s { 1s } ) } <<s { 1s } )
62 ovex ( { 0s } |s { 1s } ) ∈ V
63 62 snid ( { 0s } |s { 1s } ) ∈ { ( { 0s } |s { 1s } ) }
64 63 a1i ( ⊤ → ( { 0s } |s { 1s } ) ∈ { ( { 0s } |s { 1s } ) } )
65 38 snid 1s ∈ { 1s }
66 65 a1i ( ⊤ → 1s ∈ { 1s } )
67 61 64 66 ssltsepcd ( ⊤ → ( { 0s } |s { 1s } ) <s 1s )
68 67 mptru ( { 0s } |s { 1s } ) <s 1s
69 breq1 ( 𝑦 = ( { 0s } |s { 1s } ) → ( 𝑦 <s 1s ↔ ( { 0s } |s { 1s } ) <s 1s ) )
70 62 69 ralsn ( ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ↔ ( { 0s } |s { 1s } ) <s 1s )
71 68 70 mpbir 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s
72 4 8 addscld ( ⊤ → ( 1s +s ( { 0s } |s { 1s } ) ) ∈ No )
73 8 sltp1d ( ⊤ → ( { 0s } |s { 1s } ) <s ( ( { 0s } |s { 1s } ) +s 1s ) )
74 73 49 breqtrdi ( ⊤ → ( { 0s } |s { 1s } ) <s ( 1s +s ( { 0s } |s { 1s } ) ) )
75 8 72 74 ssltsn ( ⊤ → { ( { 0s } |s { 1s } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } )
76 75 mptru { ( { 0s } |s { 1s } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) }
77 snelpwi ( 0s No → { 0s } ∈ 𝒫 No )
78 1 77 ax-mp { 0s } ∈ 𝒫 No
79 nulssgt ( { 0s } ∈ 𝒫 No → { 0s } <<s ∅ )
80 78 79 ax-mp { 0s } <<s ∅
81 eqid ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } )
82 df-1s 1s = ( { 0s } |s ∅ )
83 slerec ( ( ( { ( { 0s } |s { 1s } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } ∧ { 0s } <<s ∅ ) ∧ ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∧ 1s = ( { 0s } |s ∅ ) ) ) → ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ≤s 1s ↔ ( ∀ 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <s 𝑥 ∧ ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ) ) )
84 76 80 81 82 83 mp4an ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ≤s 1s ↔ ( ∀ 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <s 𝑥 ∧ ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ) )
85 58 71 84 mpbir2an ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ≤s 1s
86 60 simp2d ( ⊤ → { 0s } <<s { ( { 0s } |s { 1s } ) } )
87 15 snid 0s ∈ { 0s }
88 87 a1i ( ⊤ → 0s ∈ { 0s } )
89 86 88 64 ssltsepcd ( ⊤ → 0s <s ( { 0s } |s { 1s } ) )
90 89 mptru 0s <s ( { 0s } |s { 1s } )
91 sltadd1 ( ( 0s No ∧ ( { 0s } |s { 1s } ) ∈ No ∧ 1s No ) → ( 0s <s ( { 0s } |s { 1s } ) ↔ ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) )
92 1 9 3 91 mp3an ( 0s <s ( { 0s } |s { 1s } ) ↔ ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) )
93 90 92 mpbi ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s )
94 addslid ( 1s No → ( 0s +s 1s ) = 1s )
95 3 94 ax-mp ( 0s +s 1s ) = 1s
96 93 95 49 3brtr3i 1s <s ( 1s +s ( { 0s } |s { 1s } ) )
97 ovex ( 1s +s ( { 0s } |s { 1s } ) ) ∈ V
98 breq2 ( 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) → ( 1s <s 𝑥 ↔ 1s <s ( 1s +s ( { 0s } |s { 1s } ) ) ) )
99 97 98 ralsn ( ∀ 𝑥 ∈ { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s <s 𝑥 ↔ 1s <s ( 1s +s ( { 0s } |s { 1s } ) ) )
100 96 99 mpbir 𝑥 ∈ { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s <s 𝑥
101 75 scutcld ( ⊤ → ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ No )
102 scutcut ( { ( { 0s } |s { 1s } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } → ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ No ∧ { ( { 0s } |s { 1s } ) } <<s { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } ∧ { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) )
103 75 102 syl ( ⊤ → ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ No ∧ { ( { 0s } |s { 1s } ) } <<s { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } ∧ { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) )
104 103 simp2d ( ⊤ → { ( { 0s } |s { 1s } ) } <<s { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } )
105 ovex ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ V
106 105 snid ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) }
107 106 a1i ( ⊤ → ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } )
108 104 64 107 ssltsepcd ( ⊤ → ( { 0s } |s { 1s } ) <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) )
109 2 8 101 89 108 slttrd ( ⊤ → 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) )
110 109 mptru 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } )
111 breq1 ( 𝑦 = 0s → ( 𝑦 <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ↔ 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) )
112 15 111 ralsn ( ∀ 𝑦 ∈ { 0s } 𝑦 <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ↔ 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) )
113 110 112 mpbir 𝑦 ∈ { 0s } 𝑦 <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } )
114 slerec ( ( ( { 0s } <<s ∅ ∧ { ( { 0s } |s { 1s } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∧ ( 1s = ( { 0s } |s ∅ ) ∧ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) ) → ( 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ↔ ( ∀ 𝑥 ∈ { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s <s 𝑥 ∧ ∀ 𝑦 ∈ { 0s } 𝑦 <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) ) )
115 80 76 82 81 114 mp4an ( 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ↔ ( ∀ 𝑥 ∈ { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s <s 𝑥 ∧ ∀ 𝑦 ∈ { 0s } 𝑦 <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) )
116 100 113 115 mpbir2an 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } )
117 101 mptru ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ No
118 sletri3 ( ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ No ∧ 1s No ) → ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = 1s ↔ ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ≤s 1s ∧ 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) ) )
119 117 3 118 mp2an ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = 1s ↔ ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ≤s 1s ∧ 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) )
120 85 116 119 mpbir2an ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = 1s
121 57 120 eqtri ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) = 1s
122 14 121 eqtri ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = 1s
123 11 122 eqtri ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s