| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0sno |
⊢ 0s ∈ No |
| 2 |
1
|
a1i |
⊢ ( ⊤ → 0s ∈ No ) |
| 3 |
|
1sno |
⊢ 1s ∈ No |
| 4 |
3
|
a1i |
⊢ ( ⊤ → 1s ∈ No ) |
| 5 |
|
0slt1s |
⊢ 0s <s 1s |
| 6 |
5
|
a1i |
⊢ ( ⊤ → 0s <s 1s ) |
| 7 |
2 4 6
|
ssltsn |
⊢ ( ⊤ → { 0s } <<s { 1s } ) |
| 8 |
7
|
scutcld |
⊢ ( ⊤ → ( { 0s } |s { 1s } ) ∈ No ) |
| 9 |
8
|
mptru |
⊢ ( { 0s } |s { 1s } ) ∈ No |
| 10 |
|
no2times |
⊢ ( ( { 0s } |s { 1s } ) ∈ No → ( 2s ·s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) ) |
| 11 |
9 10
|
ax-mp |
⊢ ( 2s ·s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) |
| 12 |
|
eqidd |
⊢ ( ⊤ → ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) ) |
| 13 |
7 7 12 12
|
addsunif |
⊢ ( ⊤ → ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) ) |
| 14 |
13
|
mptru |
⊢ ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) |
| 15 |
1
|
elexi |
⊢ 0s ∈ V |
| 16 |
|
oveq1 |
⊢ ( 𝑦 = 0s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( 0s +s ( { 0s } |s { 1s } ) ) ) |
| 17 |
16
|
eqeq2d |
⊢ ( 𝑦 = 0s → ( 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( 0s +s ( { 0s } |s { 1s } ) ) ) ) |
| 18 |
15 17
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( 0s +s ( { 0s } |s { 1s } ) ) ) |
| 19 |
|
addslid |
⊢ ( ( { 0s } |s { 1s } ) ∈ No → ( 0s +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } ) ) |
| 20 |
9 19
|
ax-mp |
⊢ ( 0s +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } ) |
| 21 |
20
|
eqeq2i |
⊢ ( 𝑥 = ( 0s +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( { 0s } |s { 1s } ) ) |
| 22 |
18 21
|
bitri |
⊢ ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( { 0s } |s { 1s } ) ) |
| 23 |
22
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { 𝑥 ∣ 𝑥 = ( { 0s } |s { 1s } ) } |
| 24 |
|
df-sn |
⊢ { ( { 0s } |s { 1s } ) } = { 𝑥 ∣ 𝑥 = ( { 0s } |s { 1s } ) } |
| 25 |
23 24
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { ( { 0s } |s { 1s } ) } |
| 26 |
|
oveq2 |
⊢ ( 𝑦 = 0s → ( ( { 0s } |s { 1s } ) +s 𝑦 ) = ( ( { 0s } |s { 1s } ) +s 0s ) ) |
| 27 |
26
|
eqeq2d |
⊢ ( 𝑦 = 0s → ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 0s ) ) ) |
| 28 |
15 27
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 0s ) ) |
| 29 |
|
addsrid |
⊢ ( ( { 0s } |s { 1s } ) ∈ No → ( ( { 0s } |s { 1s } ) +s 0s ) = ( { 0s } |s { 1s } ) ) |
| 30 |
9 29
|
ax-mp |
⊢ ( ( { 0s } |s { 1s } ) +s 0s ) = ( { 0s } |s { 1s } ) |
| 31 |
30
|
eqeq2i |
⊢ ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 0s ) ↔ 𝑥 = ( { 0s } |s { 1s } ) ) |
| 32 |
28 31
|
bitri |
⊢ ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( { 0s } |s { 1s } ) ) |
| 33 |
32
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { 𝑥 ∣ 𝑥 = ( { 0s } |s { 1s } ) } |
| 34 |
33 24
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { ( { 0s } |s { 1s } ) } |
| 35 |
25 34
|
uneq12i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = ( { ( { 0s } |s { 1s } ) } ∪ { ( { 0s } |s { 1s } ) } ) |
| 36 |
|
unidm |
⊢ ( { ( { 0s } |s { 1s } ) } ∪ { ( { 0s } |s { 1s } ) } ) = { ( { 0s } |s { 1s } ) } |
| 37 |
35 36
|
eqtri |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = { ( { 0s } |s { 1s } ) } |
| 38 |
3
|
elexi |
⊢ 1s ∈ V |
| 39 |
|
oveq1 |
⊢ ( 𝑦 = 1s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 40 |
39
|
eqeq2d |
⊢ ( 𝑦 = 1s → ( 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) ) ) |
| 41 |
38 40
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 42 |
41
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { 𝑥 ∣ 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 43 |
|
df-sn |
⊢ { ( 1s +s ( { 0s } |s { 1s } ) ) } = { 𝑥 ∣ 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 44 |
42 43
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 45 |
|
oveq2 |
⊢ ( 𝑦 = 1s → ( ( { 0s } |s { 1s } ) +s 𝑦 ) = ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 46 |
45
|
eqeq2d |
⊢ ( 𝑦 = 1s → ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) ) ) |
| 47 |
38 46
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 48 |
|
addscom |
⊢ ( ( ( { 0s } |s { 1s } ) ∈ No ∧ 1s ∈ No ) → ( ( { 0s } |s { 1s } ) +s 1s ) = ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 49 |
9 3 48
|
mp2an |
⊢ ( ( { 0s } |s { 1s } ) +s 1s ) = ( 1s +s ( { 0s } |s { 1s } ) ) |
| 50 |
49
|
eqeq2i |
⊢ ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) ↔ 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 51 |
47 50
|
bitri |
⊢ ( ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 52 |
51
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { 𝑥 ∣ 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 53 |
52 43
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 54 |
44 53
|
uneq12i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = ( { ( 1s +s ( { 0s } |s { 1s } ) ) } ∪ { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 55 |
|
unidm |
⊢ ( { ( 1s +s ( { 0s } |s { 1s } ) ) } ∪ { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = { ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 56 |
54 55
|
eqtri |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = { ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 57 |
37 56
|
oveq12i |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) = ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 58 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <s 𝑥 |
| 59 |
|
scutcut |
⊢ ( { 0s } <<s { 1s } → ( ( { 0s } |s { 1s } ) ∈ No ∧ { 0s } <<s { ( { 0s } |s { 1s } ) } ∧ { ( { 0s } |s { 1s } ) } <<s { 1s } ) ) |
| 60 |
7 59
|
syl |
⊢ ( ⊤ → ( ( { 0s } |s { 1s } ) ∈ No ∧ { 0s } <<s { ( { 0s } |s { 1s } ) } ∧ { ( { 0s } |s { 1s } ) } <<s { 1s } ) ) |
| 61 |
60
|
simp3d |
⊢ ( ⊤ → { ( { 0s } |s { 1s } ) } <<s { 1s } ) |
| 62 |
|
ovex |
⊢ ( { 0s } |s { 1s } ) ∈ V |
| 63 |
62
|
snid |
⊢ ( { 0s } |s { 1s } ) ∈ { ( { 0s } |s { 1s } ) } |
| 64 |
63
|
a1i |
⊢ ( ⊤ → ( { 0s } |s { 1s } ) ∈ { ( { 0s } |s { 1s } ) } ) |
| 65 |
38
|
snid |
⊢ 1s ∈ { 1s } |
| 66 |
65
|
a1i |
⊢ ( ⊤ → 1s ∈ { 1s } ) |
| 67 |
61 64 66
|
ssltsepcd |
⊢ ( ⊤ → ( { 0s } |s { 1s } ) <s 1s ) |
| 68 |
67
|
mptru |
⊢ ( { 0s } |s { 1s } ) <s 1s |
| 69 |
|
breq1 |
⊢ ( 𝑦 = ( { 0s } |s { 1s } ) → ( 𝑦 <s 1s ↔ ( { 0s } |s { 1s } ) <s 1s ) ) |
| 70 |
62 69
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ↔ ( { 0s } |s { 1s } ) <s 1s ) |
| 71 |
68 70
|
mpbir |
⊢ ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s |
| 72 |
4 8
|
addscld |
⊢ ( ⊤ → ( 1s +s ( { 0s } |s { 1s } ) ) ∈ No ) |
| 73 |
8
|
sltp1d |
⊢ ( ⊤ → ( { 0s } |s { 1s } ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 74 |
73 49
|
breqtrdi |
⊢ ( ⊤ → ( { 0s } |s { 1s } ) <s ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 75 |
8 72 74
|
ssltsn |
⊢ ( ⊤ → { ( { 0s } |s { 1s } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 76 |
75
|
mptru |
⊢ { ( { 0s } |s { 1s } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } |
| 77 |
|
snelpwi |
⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) |
| 78 |
1 77
|
ax-mp |
⊢ { 0s } ∈ 𝒫 No |
| 79 |
|
nulssgt |
⊢ ( { 0s } ∈ 𝒫 No → { 0s } <<s ∅ ) |
| 80 |
78 79
|
ax-mp |
⊢ { 0s } <<s ∅ |
| 81 |
|
eqid |
⊢ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 82 |
|
df-1s |
⊢ 1s = ( { 0s } |s ∅ ) |
| 83 |
|
slerec |
⊢ ( ( ( { ( { 0s } |s { 1s } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } ∧ { 0s } <<s ∅ ) ∧ ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∧ 1s = ( { 0s } |s ∅ ) ) ) → ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ≤s 1s ↔ ( ∀ 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <s 𝑥 ∧ ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ) ) ) |
| 84 |
76 80 81 82 83
|
mp4an |
⊢ ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ≤s 1s ↔ ( ∀ 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) <s 𝑥 ∧ ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ) ) |
| 85 |
58 71 84
|
mpbir2an |
⊢ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ≤s 1s |
| 86 |
60
|
simp2d |
⊢ ( ⊤ → { 0s } <<s { ( { 0s } |s { 1s } ) } ) |
| 87 |
15
|
snid |
⊢ 0s ∈ { 0s } |
| 88 |
87
|
a1i |
⊢ ( ⊤ → 0s ∈ { 0s } ) |
| 89 |
86 88 64
|
ssltsepcd |
⊢ ( ⊤ → 0s <s ( { 0s } |s { 1s } ) ) |
| 90 |
89
|
mptru |
⊢ 0s <s ( { 0s } |s { 1s } ) |
| 91 |
|
sltadd1 |
⊢ ( ( 0s ∈ No ∧ ( { 0s } |s { 1s } ) ∈ No ∧ 1s ∈ No ) → ( 0s <s ( { 0s } |s { 1s } ) ↔ ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) ) |
| 92 |
1 9 3 91
|
mp3an |
⊢ ( 0s <s ( { 0s } |s { 1s } ) ↔ ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 93 |
90 92
|
mpbi |
⊢ ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) |
| 94 |
|
addslid |
⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) |
| 95 |
3 94
|
ax-mp |
⊢ ( 0s +s 1s ) = 1s |
| 96 |
93 95 49
|
3brtr3i |
⊢ 1s <s ( 1s +s ( { 0s } |s { 1s } ) ) |
| 97 |
|
ovex |
⊢ ( 1s +s ( { 0s } |s { 1s } ) ) ∈ V |
| 98 |
|
breq2 |
⊢ ( 𝑥 = ( 1s +s ( { 0s } |s { 1s } ) ) → ( 1s <s 𝑥 ↔ 1s <s ( 1s +s ( { 0s } |s { 1s } ) ) ) ) |
| 99 |
97 98
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s <s 𝑥 ↔ 1s <s ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 100 |
96 99
|
mpbir |
⊢ ∀ 𝑥 ∈ { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s <s 𝑥 |
| 101 |
75
|
scutcld |
⊢ ( ⊤ → ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ No ) |
| 102 |
|
scutcut |
⊢ ( { ( { 0s } |s { 1s } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } → ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ No ∧ { ( { 0s } |s { 1s } ) } <<s { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } ∧ { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) |
| 103 |
75 102
|
syl |
⊢ ( ⊤ → ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ No ∧ { ( { 0s } |s { 1s } ) } <<s { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } ∧ { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) |
| 104 |
103
|
simp2d |
⊢ ( ⊤ → { ( { 0s } |s { 1s } ) } <<s { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } ) |
| 105 |
|
ovex |
⊢ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ V |
| 106 |
105
|
snid |
⊢ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } |
| 107 |
106
|
a1i |
⊢ ( ⊤ → ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ { ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) } ) |
| 108 |
104 64 107
|
ssltsepcd |
⊢ ( ⊤ → ( { 0s } |s { 1s } ) <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) |
| 109 |
2 8 101 89 108
|
slttrd |
⊢ ( ⊤ → 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) |
| 110 |
109
|
mptru |
⊢ 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 111 |
|
breq1 |
⊢ ( 𝑦 = 0s → ( 𝑦 <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ↔ 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) ) |
| 112 |
15 111
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { 0s } 𝑦 <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ↔ 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) |
| 113 |
110 112
|
mpbir |
⊢ ∀ 𝑦 ∈ { 0s } 𝑦 <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 114 |
|
slerec |
⊢ ( ( ( { 0s } <<s ∅ ∧ { ( { 0s } |s { 1s } ) } <<s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∧ ( 1s = ( { 0s } |s ∅ ) ∧ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) ) → ( 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ↔ ( ∀ 𝑥 ∈ { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s <s 𝑥 ∧ ∀ 𝑦 ∈ { 0s } 𝑦 <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) ) ) |
| 115 |
80 76 82 81 114
|
mp4an |
⊢ ( 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ↔ ( ∀ 𝑥 ∈ { ( 1s +s ( { 0s } |s { 1s } ) ) } 1s <s 𝑥 ∧ ∀ 𝑦 ∈ { 0s } 𝑦 <s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) ) |
| 116 |
100 113 115
|
mpbir2an |
⊢ 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) |
| 117 |
101
|
mptru |
⊢ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ No |
| 118 |
|
sletri3 |
⊢ ( ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ∈ No ∧ 1s ∈ No ) → ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = 1s ↔ ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ≤s 1s ∧ 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) ) ) |
| 119 |
117 3 118
|
mp2an |
⊢ ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = 1s ↔ ( ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ≤s 1s ∧ 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) ) ) |
| 120 |
85 116 119
|
mpbir2an |
⊢ ( { ( { 0s } |s { 1s } ) } |s { ( 1s +s ( { 0s } |s { 1s } ) ) } ) = 1s |
| 121 |
57 120
|
eqtri |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) = 1s |
| 122 |
14 121
|
eqtri |
⊢ ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = 1s |
| 123 |
11 122
|
eqtri |
⊢ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s |