| Step |
Hyp |
Ref |
Expression |
| 1 |
|
twocut |
⊢ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s |
| 2 |
|
1sno |
⊢ 1s ∈ No |
| 3 |
2
|
a1i |
⊢ ( ⊤ → 1s ∈ No ) |
| 4 |
|
0sno |
⊢ 0s ∈ No |
| 5 |
4
|
a1i |
⊢ ( ⊤ → 0s ∈ No ) |
| 6 |
|
0slt1s |
⊢ 0s <s 1s |
| 7 |
6
|
a1i |
⊢ ( ⊤ → 0s <s 1s ) |
| 8 |
5 3 7
|
ssltsn |
⊢ ( ⊤ → { 0s } <<s { 1s } ) |
| 9 |
8
|
scutcld |
⊢ ( ⊤ → ( { 0s } |s { 1s } ) ∈ No ) |
| 10 |
|
2sno |
⊢ 2s ∈ No |
| 11 |
10
|
a1i |
⊢ ( ⊤ → 2s ∈ No ) |
| 12 |
|
2ne0s |
⊢ 2s ≠ 0s |
| 13 |
12
|
a1i |
⊢ ( ⊤ → 2s ≠ 0s ) |
| 14 |
|
oveq2 |
⊢ ( 𝑥 = ( { 0s } |s { 1s } ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( { 0s } |s { 1s } ) ) ) |
| 15 |
14
|
eqeq1d |
⊢ ( 𝑥 = ( { 0s } |s { 1s } ) → ( ( 2s ·s 𝑥 ) = 1s ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) ) |
| 16 |
1
|
a1i |
⊢ ( ⊤ → ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) |
| 17 |
15 9 16
|
rspcedvdw |
⊢ ( ⊤ → ∃ 𝑥 ∈ No ( 2s ·s 𝑥 ) = 1s ) |
| 18 |
3 9 11 13 17
|
divsmulwd |
⊢ ( ⊤ → ( ( 1s /su 2s ) = ( { 0s } |s { 1s } ) ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) ) |
| 19 |
1 18
|
mpbiri |
⊢ ( ⊤ → ( 1s /su 2s ) = ( { 0s } |s { 1s } ) ) |
| 20 |
19
|
mptru |
⊢ ( 1s /su 2s ) = ( { 0s } |s { 1s } ) |