| Step |
Hyp |
Ref |
Expression |
| 1 |
|
snex |
⊢ { 0s } ∈ V |
| 2 |
1
|
a1i |
⊢ ( ⊤ → { 0s } ∈ V ) |
| 3 |
|
snex |
⊢ { 1s } ∈ V |
| 4 |
3
|
a1i |
⊢ ( ⊤ → { 1s } ∈ V ) |
| 5 |
|
0sno |
⊢ 0s ∈ No |
| 6 |
5
|
a1i |
⊢ ( ⊤ → 0s ∈ No ) |
| 7 |
6
|
snssd |
⊢ ( ⊤ → { 0s } ⊆ No ) |
| 8 |
|
1sno |
⊢ 1s ∈ No |
| 9 |
|
snssi |
⊢ ( 1s ∈ No → { 1s } ⊆ No ) |
| 10 |
8 9
|
mp1i |
⊢ ( ⊤ → { 1s } ⊆ No ) |
| 11 |
|
velsn |
⊢ ( 𝑥 ∈ { 0s } ↔ 𝑥 = 0s ) |
| 12 |
|
velsn |
⊢ ( 𝑦 ∈ { 1s } ↔ 𝑦 = 1s ) |
| 13 |
|
0slt1s |
⊢ 0s <s 1s |
| 14 |
|
breq12 |
⊢ ( ( 𝑥 = 0s ∧ 𝑦 = 1s ) → ( 𝑥 <s 𝑦 ↔ 0s <s 1s ) ) |
| 15 |
13 14
|
mpbiri |
⊢ ( ( 𝑥 = 0s ∧ 𝑦 = 1s ) → 𝑥 <s 𝑦 ) |
| 16 |
11 12 15
|
syl2anb |
⊢ ( ( 𝑥 ∈ { 0s } ∧ 𝑦 ∈ { 1s } ) → 𝑥 <s 𝑦 ) |
| 17 |
16
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ { 0s } ∧ 𝑦 ∈ { 1s } ) → 𝑥 <s 𝑦 ) |
| 18 |
2 4 7 10 17
|
ssltd |
⊢ ( ⊤ → { 0s } <<s { 1s } ) |
| 19 |
18
|
scutcld |
⊢ ( ⊤ → ( { 0s } |s { 1s } ) ∈ No ) |
| 20 |
19
|
mptru |
⊢ ( { 0s } |s { 1s } ) ∈ No |
| 21 |
|
no2times |
⊢ ( ( { 0s } |s { 1s } ) ∈ No → ( 2s ·s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) ) |
| 22 |
20 21
|
ax-mp |
⊢ ( 2s ·s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) |
| 23 |
|
eqidd |
⊢ ( ⊤ → ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) ) |
| 24 |
18 18 23 23
|
addsunif |
⊢ ( ⊤ → ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) ) |
| 25 |
24
|
mptru |
⊢ ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) |
| 26 |
5
|
elexi |
⊢ 0s ∈ V |
| 27 |
|
oveq1 |
⊢ ( 𝑦 = 0s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( 0s +s ( { 0s } |s { 1s } ) ) ) |
| 28 |
|
addslid |
⊢ ( ( { 0s } |s { 1s } ) ∈ No → ( 0s +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } ) ) |
| 29 |
20 28
|
ax-mp |
⊢ ( 0s +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } ) |
| 30 |
27 29
|
eqtrdi |
⊢ ( 𝑦 = 0s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } ) ) |
| 31 |
30
|
eqeq2d |
⊢ ( 𝑦 = 0s → ( 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( { 0s } |s { 1s } ) ) ) |
| 32 |
26 31
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( { 0s } |s { 1s } ) ) |
| 33 |
32
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { 𝑥 ∣ 𝑥 = ( { 0s } |s { 1s } ) } |
| 34 |
|
df-sn |
⊢ { ( { 0s } |s { 1s } ) } = { 𝑥 ∣ 𝑥 = ( { 0s } |s { 1s } ) } |
| 35 |
33 34
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { ( { 0s } |s { 1s } ) } |
| 36 |
|
oveq2 |
⊢ ( 𝑦 = 0s → ( ( { 0s } |s { 1s } ) +s 𝑦 ) = ( ( { 0s } |s { 1s } ) +s 0s ) ) |
| 37 |
|
addsrid |
⊢ ( ( { 0s } |s { 1s } ) ∈ No → ( ( { 0s } |s { 1s } ) +s 0s ) = ( { 0s } |s { 1s } ) ) |
| 38 |
20 37
|
ax-mp |
⊢ ( ( { 0s } |s { 1s } ) +s 0s ) = ( { 0s } |s { 1s } ) |
| 39 |
36 38
|
eqtrdi |
⊢ ( 𝑦 = 0s → ( ( { 0s } |s { 1s } ) +s 𝑦 ) = ( { 0s } |s { 1s } ) ) |
| 40 |
39
|
eqeq2d |
⊢ ( 𝑦 = 0s → ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( { 0s } |s { 1s } ) ) ) |
| 41 |
26 40
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( { 0s } |s { 1s } ) ) |
| 42 |
41
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { 𝑥 ∣ 𝑥 = ( { 0s } |s { 1s } ) } |
| 43 |
42 34
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { ( { 0s } |s { 1s } ) } |
| 44 |
35 43
|
uneq12i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = ( { ( { 0s } |s { 1s } ) } ∪ { ( { 0s } |s { 1s } ) } ) |
| 45 |
|
unidm |
⊢ ( { ( { 0s } |s { 1s } ) } ∪ { ( { 0s } |s { 1s } ) } ) = { ( { 0s } |s { 1s } ) } |
| 46 |
44 45
|
eqtri |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = { ( { 0s } |s { 1s } ) } |
| 47 |
8
|
elexi |
⊢ 1s ∈ V |
| 48 |
|
oveq1 |
⊢ ( 𝑦 = 1s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( 1s +s ( { 0s } |s { 1s } ) ) ) |
| 49 |
|
addscom |
⊢ ( ( 1s ∈ No ∧ ( { 0s } |s { 1s } ) ∈ No ) → ( 1s +s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 50 |
8 20 49
|
mp2an |
⊢ ( 1s +s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s 1s ) |
| 51 |
48 50
|
eqtrdi |
⊢ ( 𝑦 = 1s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 52 |
51
|
eqeq2d |
⊢ ( 𝑦 = 1s → ( 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) ) ) |
| 53 |
47 52
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 54 |
53
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { 𝑥 ∣ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) } |
| 55 |
|
df-sn |
⊢ { ( ( { 0s } |s { 1s } ) +s 1s ) } = { 𝑥 ∣ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) } |
| 56 |
54 55
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { ( ( { 0s } |s { 1s } ) +s 1s ) } |
| 57 |
|
oveq2 |
⊢ ( 𝑦 = 1s → ( ( { 0s } |s { 1s } ) +s 𝑦 ) = ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 58 |
57
|
eqeq2d |
⊢ ( 𝑦 = 1s → ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) ) ) |
| 59 |
47 58
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 60 |
59
|
abbii |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { 𝑥 ∣ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) } |
| 61 |
60 55
|
eqtr4i |
⊢ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { ( ( { 0s } |s { 1s } ) +s 1s ) } |
| 62 |
56 61
|
uneq12i |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = ( { ( ( { 0s } |s { 1s } ) +s 1s ) } ∪ { ( ( { 0s } |s { 1s } ) +s 1s ) } ) |
| 63 |
|
unidm |
⊢ ( { ( ( { 0s } |s { 1s } ) +s 1s ) } ∪ { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = { ( ( { 0s } |s { 1s } ) +s 1s ) } |
| 64 |
62 63
|
eqtri |
⊢ ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = { ( ( { 0s } |s { 1s } ) +s 1s ) } |
| 65 |
46 64
|
oveq12i |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) = ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) |
| 66 |
|
ral0 |
⊢ ∀ 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) <s 𝑥 |
| 67 |
|
slerflex |
⊢ ( 1s ∈ No → 1s ≤s 1s ) |
| 68 |
8 67
|
ax-mp |
⊢ 1s ≤s 1s |
| 69 |
|
breq1 |
⊢ ( 𝑦 = 1s → ( 𝑦 ≤s 1s ↔ 1s ≤s 1s ) ) |
| 70 |
47 69
|
rexsn |
⊢ ( ∃ 𝑦 ∈ { 1s } 𝑦 ≤s 1s ↔ 1s ≤s 1s ) |
| 71 |
68 70
|
mpbir |
⊢ ∃ 𝑦 ∈ { 1s } 𝑦 ≤s 1s |
| 72 |
71
|
olci |
⊢ ( ∃ 𝑥 ∈ { 0s } ( { 0s } |s { 1s } ) ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 1s } 𝑦 ≤s 1s ) |
| 73 |
18
|
mptru |
⊢ { 0s } <<s { 1s } |
| 74 |
|
snelpwi |
⊢ ( 0s ∈ No → { 0s } ∈ 𝒫 No ) |
| 75 |
5 74
|
ax-mp |
⊢ { 0s } ∈ 𝒫 No |
| 76 |
|
nulssgt |
⊢ ( { 0s } ∈ 𝒫 No → { 0s } <<s ∅ ) |
| 77 |
75 76
|
ax-mp |
⊢ { 0s } <<s ∅ |
| 78 |
|
eqid |
⊢ ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) |
| 79 |
|
df-1s |
⊢ 1s = ( { 0s } |s ∅ ) |
| 80 |
|
sltrec |
⊢ ( ( ( { 0s } <<s { 1s } ∧ { 0s } <<s ∅ ) ∧ ( ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) ∧ 1s = ( { 0s } |s ∅ ) ) ) → ( ( { 0s } |s { 1s } ) <s 1s ↔ ( ∃ 𝑥 ∈ { 0s } ( { 0s } |s { 1s } ) ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 1s } 𝑦 ≤s 1s ) ) ) |
| 81 |
73 77 78 79 80
|
mp4an |
⊢ ( ( { 0s } |s { 1s } ) <s 1s ↔ ( ∃ 𝑥 ∈ { 0s } ( { 0s } |s { 1s } ) ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 1s } 𝑦 ≤s 1s ) ) |
| 82 |
72 81
|
mpbir |
⊢ ( { 0s } |s { 1s } ) <s 1s |
| 83 |
|
ovex |
⊢ ( { 0s } |s { 1s } ) ∈ V |
| 84 |
|
breq1 |
⊢ ( 𝑦 = ( { 0s } |s { 1s } ) → ( 𝑦 <s 1s ↔ ( { 0s } |s { 1s } ) <s 1s ) ) |
| 85 |
83 84
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ↔ ( { 0s } |s { 1s } ) <s 1s ) |
| 86 |
82 85
|
mpbir |
⊢ ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s |
| 87 |
|
snex |
⊢ { ( { 0s } |s { 1s } ) } ∈ V |
| 88 |
87
|
a1i |
⊢ ( ⊤ → { ( { 0s } |s { 1s } ) } ∈ V ) |
| 89 |
|
snex |
⊢ { ( ( { 0s } |s { 1s } ) +s 1s ) } ∈ V |
| 90 |
89
|
a1i |
⊢ ( ⊤ → { ( ( { 0s } |s { 1s } ) +s 1s ) } ∈ V ) |
| 91 |
19
|
snssd |
⊢ ( ⊤ → { ( { 0s } |s { 1s } ) } ⊆ No ) |
| 92 |
8
|
a1i |
⊢ ( ⊤ → 1s ∈ No ) |
| 93 |
19 92
|
addscld |
⊢ ( ⊤ → ( ( { 0s } |s { 1s } ) +s 1s ) ∈ No ) |
| 94 |
93
|
snssd |
⊢ ( ⊤ → { ( ( { 0s } |s { 1s } ) +s 1s ) } ⊆ No ) |
| 95 |
|
velsn |
⊢ ( 𝑥 ∈ { ( { 0s } |s { 1s } ) } ↔ 𝑥 = ( { 0s } |s { 1s } ) ) |
| 96 |
|
velsn |
⊢ ( 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } ↔ 𝑦 = ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 97 |
|
sltadd2 |
⊢ ( ( 0s ∈ No ∧ 1s ∈ No ∧ ( { 0s } |s { 1s } ) ∈ No ) → ( 0s <s 1s ↔ ( ( { 0s } |s { 1s } ) +s 0s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) ) |
| 98 |
5 8 20 97
|
mp3an |
⊢ ( 0s <s 1s ↔ ( ( { 0s } |s { 1s } ) +s 0s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 99 |
13 98
|
mpbi |
⊢ ( ( { 0s } |s { 1s } ) +s 0s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) |
| 100 |
38 99
|
eqbrtrri |
⊢ ( { 0s } |s { 1s } ) <s ( ( { 0s } |s { 1s } ) +s 1s ) |
| 101 |
|
breq12 |
⊢ ( ( 𝑥 = ( { 0s } |s { 1s } ) ∧ 𝑦 = ( ( { 0s } |s { 1s } ) +s 1s ) ) → ( 𝑥 <s 𝑦 ↔ ( { 0s } |s { 1s } ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) ) |
| 102 |
100 101
|
mpbiri |
⊢ ( ( 𝑥 = ( { 0s } |s { 1s } ) ∧ 𝑦 = ( ( { 0s } |s { 1s } ) +s 1s ) ) → 𝑥 <s 𝑦 ) |
| 103 |
95 96 102
|
syl2anb |
⊢ ( ( 𝑥 ∈ { ( { 0s } |s { 1s } ) } ∧ 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } ) → 𝑥 <s 𝑦 ) |
| 104 |
103
|
3adant1 |
⊢ ( ( ⊤ ∧ 𝑥 ∈ { ( { 0s } |s { 1s } ) } ∧ 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } ) → 𝑥 <s 𝑦 ) |
| 105 |
88 90 91 94 104
|
ssltd |
⊢ ( ⊤ → { ( { 0s } |s { 1s } ) } <<s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) |
| 106 |
105
|
mptru |
⊢ { ( { 0s } |s { 1s } ) } <<s { ( ( { 0s } |s { 1s } ) +s 1s ) } |
| 107 |
|
eqid |
⊢ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) |
| 108 |
|
slerec |
⊢ ( ( ( { ( { 0s } |s { 1s } ) } <<s { ( ( { 0s } |s { 1s } ) +s 1s ) } ∧ { 0s } <<s ∅ ) ∧ ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∧ 1s = ( { 0s } |s ∅ ) ) ) → ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ≤s 1s ↔ ( ∀ 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) <s 𝑥 ∧ ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ) ) ) |
| 109 |
106 77 107 79 108
|
mp4an |
⊢ ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ≤s 1s ↔ ( ∀ 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) <s 𝑥 ∧ ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ) ) |
| 110 |
66 86 109
|
mpbir2an |
⊢ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ≤s 1s |
| 111 |
|
addslid |
⊢ ( 1s ∈ No → ( 0s +s 1s ) = 1s ) |
| 112 |
8 111
|
ax-mp |
⊢ ( 0s +s 1s ) = 1s |
| 113 |
|
slerflex |
⊢ ( 0s ∈ No → 0s ≤s 0s ) |
| 114 |
5 113
|
ax-mp |
⊢ 0s ≤s 0s |
| 115 |
|
breq2 |
⊢ ( 𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s ) ) |
| 116 |
26 115
|
rexsn |
⊢ ( ∃ 𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s ) |
| 117 |
114 116
|
mpbir |
⊢ ∃ 𝑥 ∈ { 0s } 0s ≤s 𝑥 |
| 118 |
117
|
orci |
⊢ ( ∃ 𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { 0s } |s { 1s } ) ) |
| 119 |
|
0elpw |
⊢ ∅ ∈ 𝒫 No |
| 120 |
|
nulssgt |
⊢ ( ∅ ∈ 𝒫 No → ∅ <<s ∅ ) |
| 121 |
119 120
|
ax-mp |
⊢ ∅ <<s ∅ |
| 122 |
|
df-0s |
⊢ 0s = ( ∅ |s ∅ ) |
| 123 |
|
sltrec |
⊢ ( ( ( ∅ <<s ∅ ∧ { 0s } <<s { 1s } ) ∧ ( 0s = ( ∅ |s ∅ ) ∧ ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) ) ) → ( 0s <s ( { 0s } |s { 1s } ) ↔ ( ∃ 𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { 0s } |s { 1s } ) ) ) ) |
| 124 |
121 73 122 78 123
|
mp4an |
⊢ ( 0s <s ( { 0s } |s { 1s } ) ↔ ( ∃ 𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { 0s } |s { 1s } ) ) ) |
| 125 |
118 124
|
mpbir |
⊢ 0s <s ( { 0s } |s { 1s } ) |
| 126 |
|
sltadd1 |
⊢ ( ( 0s ∈ No ∧ ( { 0s } |s { 1s } ) ∈ No ∧ 1s ∈ No ) → ( 0s <s ( { 0s } |s { 1s } ) ↔ ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) ) |
| 127 |
5 20 8 126
|
mp3an |
⊢ ( 0s <s ( { 0s } |s { 1s } ) ↔ ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 128 |
125 127
|
mpbi |
⊢ ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) |
| 129 |
112 128
|
eqbrtrri |
⊢ 1s <s ( ( { 0s } |s { 1s } ) +s 1s ) |
| 130 |
|
ovex |
⊢ ( ( { 0s } |s { 1s } ) +s 1s ) ∈ V |
| 131 |
|
breq2 |
⊢ ( 𝑦 = ( ( { 0s } |s { 1s } ) +s 1s ) → ( 1s <s 𝑦 ↔ 1s <s ( ( { 0s } |s { 1s } ) +s 1s ) ) ) |
| 132 |
130 131
|
ralsn |
⊢ ( ∀ 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } 1s <s 𝑦 ↔ 1s <s ( ( { 0s } |s { 1s } ) +s 1s ) ) |
| 133 |
129 132
|
mpbir |
⊢ ∀ 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } 1s <s 𝑦 |
| 134 |
|
breq2 |
⊢ ( 𝑥 = 1s → ( 0s <s 𝑥 ↔ 0s <s 1s ) ) |
| 135 |
47 134
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { 1s } 0s <s 𝑥 ↔ 0s <s 1s ) |
| 136 |
13 135
|
mpbir |
⊢ ∀ 𝑥 ∈ { 1s } 0s <s 𝑥 |
| 137 |
|
ral0 |
⊢ ∀ 𝑦 ∈ ∅ 𝑦 <s ( { 0s } |s { 1s } ) |
| 138 |
|
slerec |
⊢ ( ( ( ∅ <<s ∅ ∧ { 0s } <<s { 1s } ) ∧ ( 0s = ( ∅ |s ∅ ) ∧ ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) ) ) → ( 0s ≤s ( { 0s } |s { 1s } ) ↔ ( ∀ 𝑥 ∈ { 1s } 0s <s 𝑥 ∧ ∀ 𝑦 ∈ ∅ 𝑦 <s ( { 0s } |s { 1s } ) ) ) ) |
| 139 |
121 73 122 78 138
|
mp4an |
⊢ ( 0s ≤s ( { 0s } |s { 1s } ) ↔ ( ∀ 𝑥 ∈ { 1s } 0s <s 𝑥 ∧ ∀ 𝑦 ∈ ∅ 𝑦 <s ( { 0s } |s { 1s } ) ) ) |
| 140 |
136 137 139
|
mpbir2an |
⊢ 0s ≤s ( { 0s } |s { 1s } ) |
| 141 |
|
breq2 |
⊢ ( 𝑥 = ( { 0s } |s { 1s } ) → ( 0s ≤s 𝑥 ↔ 0s ≤s ( { 0s } |s { 1s } ) ) ) |
| 142 |
83 141
|
rexsn |
⊢ ( ∃ 𝑥 ∈ { ( { 0s } |s { 1s } ) } 0s ≤s 𝑥 ↔ 0s ≤s ( { 0s } |s { 1s } ) ) |
| 143 |
140 142
|
mpbir |
⊢ ∃ 𝑥 ∈ { ( { 0s } |s { 1s } ) } 0s ≤s 𝑥 |
| 144 |
143
|
orci |
⊢ ( ∃ 𝑥 ∈ { ( { 0s } |s { 1s } ) } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) |
| 145 |
|
sltrec |
⊢ ( ( ( ∅ <<s ∅ ∧ { ( { 0s } |s { 1s } ) } <<s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∧ ( 0s = ( ∅ |s ∅ ) ∧ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) → ( 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ ( ∃ 𝑥 ∈ { ( { 0s } |s { 1s } ) } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) ) |
| 146 |
121 106 122 107 145
|
mp4an |
⊢ ( 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ ( ∃ 𝑥 ∈ { ( { 0s } |s { 1s } ) } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) |
| 147 |
144 146
|
mpbir |
⊢ 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) |
| 148 |
|
breq1 |
⊢ ( 𝑥 = 0s → ( 𝑥 <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) |
| 149 |
26 148
|
ralsn |
⊢ ( ∀ 𝑥 ∈ { 0s } 𝑥 <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) |
| 150 |
147 149
|
mpbir |
⊢ ∀ 𝑥 ∈ { 0s } 𝑥 <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) |
| 151 |
|
slerec |
⊢ ( ( ( { 0s } <<s ∅ ∧ { ( { 0s } |s { 1s } ) } <<s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∧ ( 1s = ( { 0s } |s ∅ ) ∧ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) → ( 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ ( ∀ 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } 1s <s 𝑦 ∧ ∀ 𝑥 ∈ { 0s } 𝑥 <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) ) |
| 152 |
77 106 79 107 151
|
mp4an |
⊢ ( 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ ( ∀ 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } 1s <s 𝑦 ∧ ∀ 𝑥 ∈ { 0s } 𝑥 <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) |
| 153 |
133 150 152
|
mpbir2an |
⊢ 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) |
| 154 |
105
|
scutcld |
⊢ ( ⊤ → ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∈ No ) |
| 155 |
154
|
mptru |
⊢ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∈ No |
| 156 |
|
sletri3 |
⊢ ( ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∈ No ∧ 1s ∈ No ) → ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = 1s ↔ ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ≤s 1s ∧ 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) ) |
| 157 |
155 8 156
|
mp2an |
⊢ ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = 1s ↔ ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ≤s 1s ∧ 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) |
| 158 |
110 153 157
|
mpbir2an |
⊢ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = 1s |
| 159 |
65 158
|
eqtri |
⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) = 1s |
| 160 |
25 159
|
eqtri |
⊢ ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = 1s |
| 161 |
22 160
|
eqtri |
⊢ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s |
| 162 |
|
2sno |
⊢ 2s ∈ No |
| 163 |
|
2ne0s |
⊢ 2s ≠ 0s |
| 164 |
162 163
|
pm3.2i |
⊢ ( 2s ∈ No ∧ 2s ≠ 0s ) |
| 165 |
8 20 164
|
3pm3.2i |
⊢ ( 1s ∈ No ∧ ( { 0s } |s { 1s } ) ∈ No ∧ ( 2s ∈ No ∧ 2s ≠ 0s ) ) |
| 166 |
|
oveq2 |
⊢ ( 𝑥 = ( { 0s } |s { 1s } ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( { 0s } |s { 1s } ) ) ) |
| 167 |
166
|
eqeq1d |
⊢ ( 𝑥 = ( { 0s } |s { 1s } ) → ( ( 2s ·s 𝑥 ) = 1s ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) ) |
| 168 |
167
|
rspcev |
⊢ ( ( ( { 0s } |s { 1s } ) ∈ No ∧ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) → ∃ 𝑥 ∈ No ( 2s ·s 𝑥 ) = 1s ) |
| 169 |
20 161 168
|
mp2an |
⊢ ∃ 𝑥 ∈ No ( 2s ·s 𝑥 ) = 1s |
| 170 |
|
divsmulw |
⊢ ( ( ( 1s ∈ No ∧ ( { 0s } |s { 1s } ) ∈ No ∧ ( 2s ∈ No ∧ 2s ≠ 0s ) ) ∧ ∃ 𝑥 ∈ No ( 2s ·s 𝑥 ) = 1s ) → ( ( 1s /su 2s ) = ( { 0s } |s { 1s } ) ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) ) |
| 171 |
165 169 170
|
mp2an |
⊢ ( ( 1s /su 2s ) = ( { 0s } |s { 1s } ) ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) |
| 172 |
161 171
|
mpbir |
⊢ ( 1s /su 2s ) = ( { 0s } |s { 1s } ) |