Metamath Proof Explorer


Theorem nohalf

Description: An explicit expression for one half. This theorem avoids the axiom of infinity. (Contributed by Scott Fenton, 23-Jul-2025)

Ref Expression
Assertion nohalf ( 1s /su 2s ) = ( { 0s } |s { 1s } )

Proof

Step Hyp Ref Expression
1 snex { 0s } ∈ V
2 1 a1i ( ⊤ → { 0s } ∈ V )
3 snex { 1s } ∈ V
4 3 a1i ( ⊤ → { 1s } ∈ V )
5 0sno 0s No
6 5 a1i ( ⊤ → 0s No )
7 6 snssd ( ⊤ → { 0s } ⊆ No )
8 1sno 1s No
9 snssi ( 1s No → { 1s } ⊆ No )
10 8 9 mp1i ( ⊤ → { 1s } ⊆ No )
11 velsn ( 𝑥 ∈ { 0s } ↔ 𝑥 = 0s )
12 velsn ( 𝑦 ∈ { 1s } ↔ 𝑦 = 1s )
13 0slt1s 0s <s 1s
14 breq12 ( ( 𝑥 = 0s𝑦 = 1s ) → ( 𝑥 <s 𝑦 ↔ 0s <s 1s ) )
15 13 14 mpbiri ( ( 𝑥 = 0s𝑦 = 1s ) → 𝑥 <s 𝑦 )
16 11 12 15 syl2anb ( ( 𝑥 ∈ { 0s } ∧ 𝑦 ∈ { 1s } ) → 𝑥 <s 𝑦 )
17 16 3adant1 ( ( ⊤ ∧ 𝑥 ∈ { 0s } ∧ 𝑦 ∈ { 1s } ) → 𝑥 <s 𝑦 )
18 2 4 7 10 17 ssltd ( ⊤ → { 0s } <<s { 1s } )
19 18 scutcld ( ⊤ → ( { 0s } |s { 1s } ) ∈ No )
20 19 mptru ( { 0s } |s { 1s } ) ∈ No
21 no2times ( ( { 0s } |s { 1s } ) ∈ No → ( 2s ·s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) )
22 20 21 ax-mp ( 2s ·s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) )
23 eqidd ( ⊤ → ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) )
24 18 18 23 23 addsunif ( ⊤ → ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) )
25 24 mptru ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) )
26 5 elexi 0s ∈ V
27 oveq1 ( 𝑦 = 0s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( 0s +s ( { 0s } |s { 1s } ) ) )
28 addslid ( ( { 0s } |s { 1s } ) ∈ No → ( 0s +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } ) )
29 20 28 ax-mp ( 0s +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } )
30 27 29 eqtrdi ( 𝑦 = 0s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( { 0s } |s { 1s } ) )
31 30 eqeq2d ( 𝑦 = 0s → ( 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( { 0s } |s { 1s } ) ) )
32 26 31 rexsn ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( { 0s } |s { 1s } ) )
33 32 abbii { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { 𝑥𝑥 = ( { 0s } |s { 1s } ) }
34 df-sn { ( { 0s } |s { 1s } ) } = { 𝑥𝑥 = ( { 0s } |s { 1s } ) }
35 33 34 eqtr4i { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { ( { 0s } |s { 1s } ) }
36 oveq2 ( 𝑦 = 0s → ( ( { 0s } |s { 1s } ) +s 𝑦 ) = ( ( { 0s } |s { 1s } ) +s 0s ) )
37 addsrid ( ( { 0s } |s { 1s } ) ∈ No → ( ( { 0s } |s { 1s } ) +s 0s ) = ( { 0s } |s { 1s } ) )
38 20 37 ax-mp ( ( { 0s } |s { 1s } ) +s 0s ) = ( { 0s } |s { 1s } )
39 36 38 eqtrdi ( 𝑦 = 0s → ( ( { 0s } |s { 1s } ) +s 𝑦 ) = ( { 0s } |s { 1s } ) )
40 39 eqeq2d ( 𝑦 = 0s → ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( { 0s } |s { 1s } ) ) )
41 26 40 rexsn ( ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( { 0s } |s { 1s } ) )
42 41 abbii { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { 𝑥𝑥 = ( { 0s } |s { 1s } ) }
43 42 34 eqtr4i { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { ( { 0s } |s { 1s } ) }
44 35 43 uneq12i ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = ( { ( { 0s } |s { 1s } ) } ∪ { ( { 0s } |s { 1s } ) } )
45 unidm ( { ( { 0s } |s { 1s } ) } ∪ { ( { 0s } |s { 1s } ) } ) = { ( { 0s } |s { 1s } ) }
46 44 45 eqtri ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = { ( { 0s } |s { 1s } ) }
47 8 elexi 1s ∈ V
48 oveq1 ( 𝑦 = 1s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( 1s +s ( { 0s } |s { 1s } ) ) )
49 addscom ( ( 1s No ∧ ( { 0s } |s { 1s } ) ∈ No ) → ( 1s +s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s 1s ) )
50 8 20 49 mp2an ( 1s +s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s 1s )
51 48 50 eqtrdi ( 𝑦 = 1s → ( 𝑦 +s ( { 0s } |s { 1s } ) ) = ( ( { 0s } |s { 1s } ) +s 1s ) )
52 51 eqeq2d ( 𝑦 = 1s → ( 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) ) )
53 47 52 rexsn ( ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) )
54 53 abbii { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { 𝑥𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) }
55 df-sn { ( ( { 0s } |s { 1s } ) +s 1s ) } = { 𝑥𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) }
56 54 55 eqtr4i { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } = { ( ( { 0s } |s { 1s } ) +s 1s ) }
57 oveq2 ( 𝑦 = 1s → ( ( { 0s } |s { 1s } ) +s 𝑦 ) = ( ( { 0s } |s { 1s } ) +s 1s ) )
58 57 eqeq2d ( 𝑦 = 1s → ( 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) ) )
59 47 58 rexsn ( ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) ↔ 𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) )
60 59 abbii { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { 𝑥𝑥 = ( ( { 0s } |s { 1s } ) +s 1s ) }
61 60 55 eqtr4i { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } = { ( ( { 0s } |s { 1s } ) +s 1s ) }
62 56 61 uneq12i ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = ( { ( ( { 0s } |s { 1s } ) +s 1s ) } ∪ { ( ( { 0s } |s { 1s } ) +s 1s ) } )
63 unidm ( { ( ( { 0s } |s { 1s } ) +s 1s ) } ∪ { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = { ( ( { 0s } |s { 1s } ) +s 1s ) }
64 62 63 eqtri ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) = { ( ( { 0s } |s { 1s } ) +s 1s ) }
65 46 64 oveq12i ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) = ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } )
66 ral0 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) <s 𝑥
67 slerflex ( 1s No → 1s ≤s 1s )
68 8 67 ax-mp 1s ≤s 1s
69 breq1 ( 𝑦 = 1s → ( 𝑦 ≤s 1s ↔ 1s ≤s 1s ) )
70 47 69 rexsn ( ∃ 𝑦 ∈ { 1s } 𝑦 ≤s 1s ↔ 1s ≤s 1s )
71 68 70 mpbir 𝑦 ∈ { 1s } 𝑦 ≤s 1s
72 71 olci ( ∃ 𝑥 ∈ { 0s } ( { 0s } |s { 1s } ) ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 1s } 𝑦 ≤s 1s )
73 18 mptru { 0s } <<s { 1s }
74 snelpwi ( 0s No → { 0s } ∈ 𝒫 No )
75 5 74 ax-mp { 0s } ∈ 𝒫 No
76 nulssgt ( { 0s } ∈ 𝒫 No → { 0s } <<s ∅ )
77 75 76 ax-mp { 0s } <<s ∅
78 eqid ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } )
79 df-1s 1s = ( { 0s } |s ∅ )
80 sltrec ( ( ( { 0s } <<s { 1s } ∧ { 0s } <<s ∅ ) ∧ ( ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) ∧ 1s = ( { 0s } |s ∅ ) ) ) → ( ( { 0s } |s { 1s } ) <s 1s ↔ ( ∃ 𝑥 ∈ { 0s } ( { 0s } |s { 1s } ) ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 1s } 𝑦 ≤s 1s ) ) )
81 73 77 78 79 80 mp4an ( ( { 0s } |s { 1s } ) <s 1s ↔ ( ∃ 𝑥 ∈ { 0s } ( { 0s } |s { 1s } ) ≤s 𝑥 ∨ ∃ 𝑦 ∈ { 1s } 𝑦 ≤s 1s ) )
82 72 81 mpbir ( { 0s } |s { 1s } ) <s 1s
83 ovex ( { 0s } |s { 1s } ) ∈ V
84 breq1 ( 𝑦 = ( { 0s } |s { 1s } ) → ( 𝑦 <s 1s ↔ ( { 0s } |s { 1s } ) <s 1s ) )
85 83 84 ralsn ( ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ↔ ( { 0s } |s { 1s } ) <s 1s )
86 82 85 mpbir 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s
87 snex { ( { 0s } |s { 1s } ) } ∈ V
88 87 a1i ( ⊤ → { ( { 0s } |s { 1s } ) } ∈ V )
89 snex { ( ( { 0s } |s { 1s } ) +s 1s ) } ∈ V
90 89 a1i ( ⊤ → { ( ( { 0s } |s { 1s } ) +s 1s ) } ∈ V )
91 19 snssd ( ⊤ → { ( { 0s } |s { 1s } ) } ⊆ No )
92 8 a1i ( ⊤ → 1s No )
93 19 92 addscld ( ⊤ → ( ( { 0s } |s { 1s } ) +s 1s ) ∈ No )
94 93 snssd ( ⊤ → { ( ( { 0s } |s { 1s } ) +s 1s ) } ⊆ No )
95 velsn ( 𝑥 ∈ { ( { 0s } |s { 1s } ) } ↔ 𝑥 = ( { 0s } |s { 1s } ) )
96 velsn ( 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } ↔ 𝑦 = ( ( { 0s } |s { 1s } ) +s 1s ) )
97 sltadd2 ( ( 0s No ∧ 1s No ∧ ( { 0s } |s { 1s } ) ∈ No ) → ( 0s <s 1s ↔ ( ( { 0s } |s { 1s } ) +s 0s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) )
98 5 8 20 97 mp3an ( 0s <s 1s ↔ ( ( { 0s } |s { 1s } ) +s 0s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) )
99 13 98 mpbi ( ( { 0s } |s { 1s } ) +s 0s ) <s ( ( { 0s } |s { 1s } ) +s 1s )
100 38 99 eqbrtrri ( { 0s } |s { 1s } ) <s ( ( { 0s } |s { 1s } ) +s 1s )
101 breq12 ( ( 𝑥 = ( { 0s } |s { 1s } ) ∧ 𝑦 = ( ( { 0s } |s { 1s } ) +s 1s ) ) → ( 𝑥 <s 𝑦 ↔ ( { 0s } |s { 1s } ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) )
102 100 101 mpbiri ( ( 𝑥 = ( { 0s } |s { 1s } ) ∧ 𝑦 = ( ( { 0s } |s { 1s } ) +s 1s ) ) → 𝑥 <s 𝑦 )
103 95 96 102 syl2anb ( ( 𝑥 ∈ { ( { 0s } |s { 1s } ) } ∧ 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } ) → 𝑥 <s 𝑦 )
104 103 3adant1 ( ( ⊤ ∧ 𝑥 ∈ { ( { 0s } |s { 1s } ) } ∧ 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } ) → 𝑥 <s 𝑦 )
105 88 90 91 94 104 ssltd ( ⊤ → { ( { 0s } |s { 1s } ) } <<s { ( ( { 0s } |s { 1s } ) +s 1s ) } )
106 105 mptru { ( { 0s } |s { 1s } ) } <<s { ( ( { 0s } |s { 1s } ) +s 1s ) }
107 eqid ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } )
108 slerec ( ( ( { ( { 0s } |s { 1s } ) } <<s { ( ( { 0s } |s { 1s } ) +s 1s ) } ∧ { 0s } <<s ∅ ) ∧ ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∧ 1s = ( { 0s } |s ∅ ) ) ) → ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ≤s 1s ↔ ( ∀ 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) <s 𝑥 ∧ ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ) ) )
109 106 77 107 79 108 mp4an ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ≤s 1s ↔ ( ∀ 𝑥 ∈ ∅ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) <s 𝑥 ∧ ∀ 𝑦 ∈ { ( { 0s } |s { 1s } ) } 𝑦 <s 1s ) )
110 66 86 109 mpbir2an ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ≤s 1s
111 addslid ( 1s No → ( 0s +s 1s ) = 1s )
112 8 111 ax-mp ( 0s +s 1s ) = 1s
113 slerflex ( 0s No → 0s ≤s 0s )
114 5 113 ax-mp 0s ≤s 0s
115 breq2 ( 𝑥 = 0s → ( 0s ≤s 𝑥 ↔ 0s ≤s 0s ) )
116 26 115 rexsn ( ∃ 𝑥 ∈ { 0s } 0s ≤s 𝑥 ↔ 0s ≤s 0s )
117 114 116 mpbir 𝑥 ∈ { 0s } 0s ≤s 𝑥
118 117 orci ( ∃ 𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { 0s } |s { 1s } ) )
119 0elpw ∅ ∈ 𝒫 No
120 nulssgt ( ∅ ∈ 𝒫 No → ∅ <<s ∅ )
121 119 120 ax-mp ∅ <<s ∅
122 df-0s 0s = ( ∅ |s ∅ )
123 sltrec ( ( ( ∅ <<s ∅ ∧ { 0s } <<s { 1s } ) ∧ ( 0s = ( ∅ |s ∅ ) ∧ ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) ) ) → ( 0s <s ( { 0s } |s { 1s } ) ↔ ( ∃ 𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { 0s } |s { 1s } ) ) ) )
124 121 73 122 78 123 mp4an ( 0s <s ( { 0s } |s { 1s } ) ↔ ( ∃ 𝑥 ∈ { 0s } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { 0s } |s { 1s } ) ) )
125 118 124 mpbir 0s <s ( { 0s } |s { 1s } )
126 sltadd1 ( ( 0s No ∧ ( { 0s } |s { 1s } ) ∈ No ∧ 1s No ) → ( 0s <s ( { 0s } |s { 1s } ) ↔ ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) ) )
127 5 20 8 126 mp3an ( 0s <s ( { 0s } |s { 1s } ) ↔ ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s ) )
128 125 127 mpbi ( 0s +s 1s ) <s ( ( { 0s } |s { 1s } ) +s 1s )
129 112 128 eqbrtrri 1s <s ( ( { 0s } |s { 1s } ) +s 1s )
130 ovex ( ( { 0s } |s { 1s } ) +s 1s ) ∈ V
131 breq2 ( 𝑦 = ( ( { 0s } |s { 1s } ) +s 1s ) → ( 1s <s 𝑦 ↔ 1s <s ( ( { 0s } |s { 1s } ) +s 1s ) ) )
132 130 131 ralsn ( ∀ 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } 1s <s 𝑦 ↔ 1s <s ( ( { 0s } |s { 1s } ) +s 1s ) )
133 129 132 mpbir 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } 1s <s 𝑦
134 breq2 ( 𝑥 = 1s → ( 0s <s 𝑥 ↔ 0s <s 1s ) )
135 47 134 ralsn ( ∀ 𝑥 ∈ { 1s } 0s <s 𝑥 ↔ 0s <s 1s )
136 13 135 mpbir 𝑥 ∈ { 1s } 0s <s 𝑥
137 ral0 𝑦 ∈ ∅ 𝑦 <s ( { 0s } |s { 1s } )
138 slerec ( ( ( ∅ <<s ∅ ∧ { 0s } <<s { 1s } ) ∧ ( 0s = ( ∅ |s ∅ ) ∧ ( { 0s } |s { 1s } ) = ( { 0s } |s { 1s } ) ) ) → ( 0s ≤s ( { 0s } |s { 1s } ) ↔ ( ∀ 𝑥 ∈ { 1s } 0s <s 𝑥 ∧ ∀ 𝑦 ∈ ∅ 𝑦 <s ( { 0s } |s { 1s } ) ) ) )
139 121 73 122 78 138 mp4an ( 0s ≤s ( { 0s } |s { 1s } ) ↔ ( ∀ 𝑥 ∈ { 1s } 0s <s 𝑥 ∧ ∀ 𝑦 ∈ ∅ 𝑦 <s ( { 0s } |s { 1s } ) ) )
140 136 137 139 mpbir2an 0s ≤s ( { 0s } |s { 1s } )
141 breq2 ( 𝑥 = ( { 0s } |s { 1s } ) → ( 0s ≤s 𝑥 ↔ 0s ≤s ( { 0s } |s { 1s } ) ) )
142 83 141 rexsn ( ∃ 𝑥 ∈ { ( { 0s } |s { 1s } ) } 0s ≤s 𝑥 ↔ 0s ≤s ( { 0s } |s { 1s } ) )
143 140 142 mpbir 𝑥 ∈ { ( { 0s } |s { 1s } ) } 0s ≤s 𝑥
144 143 orci ( ∃ 𝑥 ∈ { ( { 0s } |s { 1s } ) } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) )
145 sltrec ( ( ( ∅ <<s ∅ ∧ { ( { 0s } |s { 1s } ) } <<s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∧ ( 0s = ( ∅ |s ∅ ) ∧ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) → ( 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ ( ∃ 𝑥 ∈ { ( { 0s } |s { 1s } ) } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) )
146 121 106 122 107 145 mp4an ( 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ ( ∃ 𝑥 ∈ { ( { 0s } |s { 1s } ) } 0s ≤s 𝑥 ∨ ∃ 𝑦 ∈ ∅ 𝑦 ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) )
147 144 146 mpbir 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } )
148 breq1 ( 𝑥 = 0s → ( 𝑥 <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) )
149 26 148 ralsn ( ∀ 𝑥 ∈ { 0s } 𝑥 <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ 0s <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) )
150 147 149 mpbir 𝑥 ∈ { 0s } 𝑥 <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } )
151 slerec ( ( ( { 0s } <<s ∅ ∧ { ( { 0s } |s { 1s } ) } <<s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∧ ( 1s = ( { 0s } |s ∅ ) ∧ ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) → ( 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ ( ∀ 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } 1s <s 𝑦 ∧ ∀ 𝑥 ∈ { 0s } 𝑥 <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) )
152 77 106 79 107 151 mp4an ( 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ↔ ( ∀ 𝑦 ∈ { ( ( { 0s } |s { 1s } ) +s 1s ) } 1s <s 𝑦 ∧ ∀ 𝑥 ∈ { 0s } 𝑥 <s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) )
153 133 150 152 mpbir2an 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } )
154 105 scutcld ( ⊤ → ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∈ No )
155 154 mptru ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∈ No
156 sletri3 ( ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ∈ No ∧ 1s No ) → ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = 1s ↔ ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ≤s 1s ∧ 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) ) )
157 155 8 156 mp2an ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = 1s ↔ ( ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ≤s 1s ∧ 1s ≤s ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) ) )
158 110 153 157 mpbir2an ( { ( { 0s } |s { 1s } ) } |s { ( ( { 0s } |s { 1s } ) +s 1s ) } ) = 1s
159 65 158 eqtri ( ( { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 0s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) |s ( { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( 𝑦 +s ( { 0s } |s { 1s } ) ) } ∪ { 𝑥 ∣ ∃ 𝑦 ∈ { 1s } 𝑥 = ( ( { 0s } |s { 1s } ) +s 𝑦 ) } ) ) = 1s
160 25 159 eqtri ( ( { 0s } |s { 1s } ) +s ( { 0s } |s { 1s } ) ) = 1s
161 22 160 eqtri ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s
162 2sno 2s No
163 2ne0s 2s ≠ 0s
164 162 163 pm3.2i ( 2s No ∧ 2s ≠ 0s )
165 8 20 164 3pm3.2i ( 1s No ∧ ( { 0s } |s { 1s } ) ∈ No ∧ ( 2s No ∧ 2s ≠ 0s ) )
166 oveq2 ( 𝑥 = ( { 0s } |s { 1s } ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( { 0s } |s { 1s } ) ) )
167 166 eqeq1d ( 𝑥 = ( { 0s } |s { 1s } ) → ( ( 2s ·s 𝑥 ) = 1s ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) )
168 167 rspcev ( ( ( { 0s } |s { 1s } ) ∈ No ∧ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) → ∃ 𝑥 No ( 2s ·s 𝑥 ) = 1s )
169 20 161 168 mp2an 𝑥 No ( 2s ·s 𝑥 ) = 1s
170 divsmulw ( ( ( 1s No ∧ ( { 0s } |s { 1s } ) ∈ No ∧ ( 2s No ∧ 2s ≠ 0s ) ) ∧ ∃ 𝑥 No ( 2s ·s 𝑥 ) = 1s ) → ( ( 1s /su 2s ) = ( { 0s } |s { 1s } ) ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) )
171 165 169 170 mp2an ( ( 1s /su 2s ) = ( { 0s } |s { 1s } ) ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s )
172 161 171 mpbir ( 1s /su 2s ) = ( { 0s } |s { 1s } )