Metamath Proof Explorer


Theorem nohalf

Description: An explicit expression for one half. This theorem avoids the axiom of infinity. (Contributed by Scott Fenton, 23-Jul-2025)

Ref Expression
Assertion nohalf ( 1s /su 2s ) = ( { 0s } |s { 1s } )

Proof

Step Hyp Ref Expression
1 twocut ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s
2 1sno 1s No
3 2 a1i ( ⊤ → 1s No )
4 0sno 0s No
5 4 a1i ( ⊤ → 0s No )
6 0slt1s 0s <s 1s
7 6 a1i ( ⊤ → 0s <s 1s )
8 5 3 7 ssltsn ( ⊤ → { 0s } <<s { 1s } )
9 8 scutcld ( ⊤ → ( { 0s } |s { 1s } ) ∈ No )
10 2sno 2s No
11 10 a1i ( ⊤ → 2s No )
12 2ne0s 2s ≠ 0s
13 12 a1i ( ⊤ → 2s ≠ 0s )
14 oveq2 ( 𝑥 = ( { 0s } |s { 1s } ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( { 0s } |s { 1s } ) ) )
15 14 eqeq1d ( 𝑥 = ( { 0s } |s { 1s } ) → ( ( 2s ·s 𝑥 ) = 1s ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) )
16 1 a1i ( ⊤ → ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s )
17 15 9 16 rspcedvdw ( ⊤ → ∃ 𝑥 No ( 2s ·s 𝑥 ) = 1s )
18 3 9 11 13 17 divsmulwd ( ⊤ → ( ( 1s /su 2s ) = ( { 0s } |s { 1s } ) ↔ ( 2s ·s ( { 0s } |s { 1s } ) ) = 1s ) )
19 1 18 mpbiri ( ⊤ → ( 1s /su 2s ) = ( { 0s } |s { 1s } ) )
20 19 mptru ( 1s /su 2s ) = ( { 0s } |s { 1s } )