Metamath Proof Explorer


Theorem nohalf

Description: An explicit expression for one half. This theorem avoids the axiom of infinity. (Contributed by Scott Fenton, 23-Jul-2025)

Ref Expression
Assertion nohalf
|- ( 1s /su 2s ) = ( { 0s } |s { 1s } )

Proof

Step Hyp Ref Expression
1 twocut
 |-  ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s
2 1sno
 |-  1s e. No
3 2 a1i
 |-  ( T. -> 1s e. No )
4 0sno
 |-  0s e. No
5 4 a1i
 |-  ( T. -> 0s e. No )
6 0slt1s
 |-  0s 
7 6 a1i
 |-  ( T. -> 0s 
8 5 3 7 ssltsn
 |-  ( T. -> { 0s } <
9 8 scutcld
 |-  ( T. -> ( { 0s } |s { 1s } ) e. No )
10 2sno
 |-  2s e. No
11 10 a1i
 |-  ( T. -> 2s e. No )
12 2ne0s
 |-  2s =/= 0s
13 12 a1i
 |-  ( T. -> 2s =/= 0s )
14 oveq2
 |-  ( x = ( { 0s } |s { 1s } ) -> ( 2s x.s x ) = ( 2s x.s ( { 0s } |s { 1s } ) ) )
15 14 eqeq1d
 |-  ( x = ( { 0s } |s { 1s } ) -> ( ( 2s x.s x ) = 1s <-> ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s ) )
16 1 a1i
 |-  ( T. -> ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s )
17 15 9 16 rspcedvdw
 |-  ( T. -> E. x e. No ( 2s x.s x ) = 1s )
18 3 9 11 13 17 divsmulwd
 |-  ( T. -> ( ( 1s /su 2s ) = ( { 0s } |s { 1s } ) <-> ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s ) )
19 1 18 mpbiri
 |-  ( T. -> ( 1s /su 2s ) = ( { 0s } |s { 1s } ) )
20 19 mptru
 |-  ( 1s /su 2s ) = ( { 0s } |s { 1s } )