| Step |
Hyp |
Ref |
Expression |
| 1 |
|
twocut |
|- ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s |
| 2 |
|
1sno |
|- 1s e. No |
| 3 |
2
|
a1i |
|- ( T. -> 1s e. No ) |
| 4 |
|
0sno |
|- 0s e. No |
| 5 |
4
|
a1i |
|- ( T. -> 0s e. No ) |
| 6 |
|
0slt1s |
|- 0s |
| 7 |
6
|
a1i |
|- ( T. -> 0s |
| 8 |
5 3 7
|
ssltsn |
|- ( T. -> { 0s } < |
| 9 |
8
|
scutcld |
|- ( T. -> ( { 0s } |s { 1s } ) e. No ) |
| 10 |
|
2sno |
|- 2s e. No |
| 11 |
10
|
a1i |
|- ( T. -> 2s e. No ) |
| 12 |
|
2ne0s |
|- 2s =/= 0s |
| 13 |
12
|
a1i |
|- ( T. -> 2s =/= 0s ) |
| 14 |
|
oveq2 |
|- ( x = ( { 0s } |s { 1s } ) -> ( 2s x.s x ) = ( 2s x.s ( { 0s } |s { 1s } ) ) ) |
| 15 |
14
|
eqeq1d |
|- ( x = ( { 0s } |s { 1s } ) -> ( ( 2s x.s x ) = 1s <-> ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s ) ) |
| 16 |
1
|
a1i |
|- ( T. -> ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s ) |
| 17 |
15 9 16
|
rspcedvdw |
|- ( T. -> E. x e. No ( 2s x.s x ) = 1s ) |
| 18 |
3 9 11 13 17
|
divsmulwd |
|- ( T. -> ( ( 1s /su 2s ) = ( { 0s } |s { 1s } ) <-> ( 2s x.s ( { 0s } |s { 1s } ) ) = 1s ) ) |
| 19 |
1 18
|
mpbiri |
|- ( T. -> ( 1s /su 2s ) = ( { 0s } |s { 1s } ) ) |
| 20 |
19
|
mptru |
|- ( 1s /su 2s ) = ( { 0s } |s { 1s } ) |