| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pw2divsnegd.1 |
|- ( ph -> A e. No ) |
| 2 |
|
pw2divsnegd.2 |
|- ( ph -> N e. NN0_s ) |
| 3 |
1 2
|
pw2divscld |
|- ( ph -> ( A /su ( 2s ^su N ) ) e. No ) |
| 4 |
3
|
negsidd |
|- ( ph -> ( ( A /su ( 2s ^su N ) ) +s ( -us ` ( A /su ( 2s ^su N ) ) ) ) = 0s ) |
| 5 |
|
2sno |
|- 2s e. No |
| 6 |
|
expscl |
|- ( ( 2s e. No /\ N e. NN0_s ) -> ( 2s ^su N ) e. No ) |
| 7 |
5 2 6
|
sylancr |
|- ( ph -> ( 2s ^su N ) e. No ) |
| 8 |
|
muls01 |
|- ( ( 2s ^su N ) e. No -> ( ( 2s ^su N ) x.s 0s ) = 0s ) |
| 9 |
7 8
|
syl |
|- ( ph -> ( ( 2s ^su N ) x.s 0s ) = 0s ) |
| 10 |
1
|
negsidd |
|- ( ph -> ( A +s ( -us ` A ) ) = 0s ) |
| 11 |
9 10
|
eqtr4d |
|- ( ph -> ( ( 2s ^su N ) x.s 0s ) = ( A +s ( -us ` A ) ) ) |
| 12 |
1
|
negscld |
|- ( ph -> ( -us ` A ) e. No ) |
| 13 |
1 12
|
addscld |
|- ( ph -> ( A +s ( -us ` A ) ) e. No ) |
| 14 |
|
0sno |
|- 0s e. No |
| 15 |
14
|
a1i |
|- ( ph -> 0s e. No ) |
| 16 |
13 15 2
|
pw2divsmuld |
|- ( ph -> ( ( ( A +s ( -us ` A ) ) /su ( 2s ^su N ) ) = 0s <-> ( ( 2s ^su N ) x.s 0s ) = ( A +s ( -us ` A ) ) ) ) |
| 17 |
11 16
|
mpbird |
|- ( ph -> ( ( A +s ( -us ` A ) ) /su ( 2s ^su N ) ) = 0s ) |
| 18 |
1 12 2
|
pw2divsdird |
|- ( ph -> ( ( A +s ( -us ` A ) ) /su ( 2s ^su N ) ) = ( ( A /su ( 2s ^su N ) ) +s ( ( -us ` A ) /su ( 2s ^su N ) ) ) ) |
| 19 |
4 17 18
|
3eqtr2rd |
|- ( ph -> ( ( A /su ( 2s ^su N ) ) +s ( ( -us ` A ) /su ( 2s ^su N ) ) ) = ( ( A /su ( 2s ^su N ) ) +s ( -us ` ( A /su ( 2s ^su N ) ) ) ) ) |
| 20 |
12 2
|
pw2divscld |
|- ( ph -> ( ( -us ` A ) /su ( 2s ^su N ) ) e. No ) |
| 21 |
3
|
negscld |
|- ( ph -> ( -us ` ( A /su ( 2s ^su N ) ) ) e. No ) |
| 22 |
20 21 3
|
addscan1d |
|- ( ph -> ( ( ( A /su ( 2s ^su N ) ) +s ( ( -us ` A ) /su ( 2s ^su N ) ) ) = ( ( A /su ( 2s ^su N ) ) +s ( -us ` ( A /su ( 2s ^su N ) ) ) ) <-> ( ( -us ` A ) /su ( 2s ^su N ) ) = ( -us ` ( A /su ( 2s ^su N ) ) ) ) ) |
| 23 |
19 22
|
mpbid |
|- ( ph -> ( ( -us ` A ) /su ( 2s ^su N ) ) = ( -us ` ( A /su ( 2s ^su N ) ) ) ) |
| 24 |
23
|
eqcomd |
|- ( ph -> ( -us ` ( A /su ( 2s ^su N ) ) ) = ( ( -us ` A ) /su ( 2s ^su N ) ) ) |