Metamath Proof Explorer


Theorem zs12negscl

Description: The dyadics are closed under negation. (Contributed by Scott Fenton, 9-Nov-2025)

Ref Expression
Assertion zs12negscl ( 𝐴 ∈ ℤs[1/2] → ( -us𝐴 ) ∈ ℤs[1/2] )

Proof

Step Hyp Ref Expression
1 oveq1 ( 𝑧 = ( -us𝑥 ) → ( 𝑧 /su ( 2ss 𝑦 ) ) = ( ( -us𝑥 ) /su ( 2ss 𝑦 ) ) )
2 1 eqeq2d ( 𝑧 = ( -us𝑥 ) → ( ( -us ‘ ( 𝑥 /su ( 2ss 𝑦 ) ) ) = ( 𝑧 /su ( 2ss 𝑦 ) ) ↔ ( -us ‘ ( 𝑥 /su ( 2ss 𝑦 ) ) ) = ( ( -us𝑥 ) /su ( 2ss 𝑦 ) ) ) )
3 znegscl ( 𝑥 ∈ ℤs → ( -us𝑥 ) ∈ ℤs )
4 3 adantl ( ( 𝑦 ∈ ℕ0s𝑥 ∈ ℤs ) → ( -us𝑥 ) ∈ ℤs )
5 zno ( 𝑥 ∈ ℤs𝑥 No )
6 5 adantl ( ( 𝑦 ∈ ℕ0s𝑥 ∈ ℤs ) → 𝑥 No )
7 simpl ( ( 𝑦 ∈ ℕ0s𝑥 ∈ ℤs ) → 𝑦 ∈ ℕ0s )
8 6 7 pw2divsnegd ( ( 𝑦 ∈ ℕ0s𝑥 ∈ ℤs ) → ( -us ‘ ( 𝑥 /su ( 2ss 𝑦 ) ) ) = ( ( -us𝑥 ) /su ( 2ss 𝑦 ) ) )
9 2 4 8 rspcedvdw ( ( 𝑦 ∈ ℕ0s𝑥 ∈ ℤs ) → ∃ 𝑧 ∈ ℤs ( -us ‘ ( 𝑥 /su ( 2ss 𝑦 ) ) ) = ( 𝑧 /su ( 2ss 𝑦 ) ) )
10 fveq2 ( 𝐴 = ( 𝑥 /su ( 2ss 𝑦 ) ) → ( -us𝐴 ) = ( -us ‘ ( 𝑥 /su ( 2ss 𝑦 ) ) ) )
11 10 eqeq1d ( 𝐴 = ( 𝑥 /su ( 2ss 𝑦 ) ) → ( ( -us𝐴 ) = ( 𝑧 /su ( 2ss 𝑦 ) ) ↔ ( -us ‘ ( 𝑥 /su ( 2ss 𝑦 ) ) ) = ( 𝑧 /su ( 2ss 𝑦 ) ) ) )
12 11 rexbidv ( 𝐴 = ( 𝑥 /su ( 2ss 𝑦 ) ) → ( ∃ 𝑧 ∈ ℤs ( -us𝐴 ) = ( 𝑧 /su ( 2ss 𝑦 ) ) ↔ ∃ 𝑧 ∈ ℤs ( -us ‘ ( 𝑥 /su ( 2ss 𝑦 ) ) ) = ( 𝑧 /su ( 2ss 𝑦 ) ) ) )
13 9 12 syl5ibrcom ( ( 𝑦 ∈ ℕ0s𝑥 ∈ ℤs ) → ( 𝐴 = ( 𝑥 /su ( 2ss 𝑦 ) ) → ∃ 𝑧 ∈ ℤs ( -us𝐴 ) = ( 𝑧 /su ( 2ss 𝑦 ) ) ) )
14 13 rexlimdva ( 𝑦 ∈ ℕ0s → ( ∃ 𝑥 ∈ ℤs 𝐴 = ( 𝑥 /su ( 2ss 𝑦 ) ) → ∃ 𝑧 ∈ ℤs ( -us𝐴 ) = ( 𝑧 /su ( 2ss 𝑦 ) ) ) )
15 14 reximia ( ∃ 𝑦 ∈ ℕ0s𝑥 ∈ ℤs 𝐴 = ( 𝑥 /su ( 2ss 𝑦 ) ) → ∃ 𝑦 ∈ ℕ0s𝑧 ∈ ℤs ( -us𝐴 ) = ( 𝑧 /su ( 2ss 𝑦 ) ) )
16 elzs12 ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2ss 𝑦 ) ) )
17 rexcom ( ∃ 𝑥 ∈ ℤs𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2ss 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℕ0s𝑥 ∈ ℤs 𝐴 = ( 𝑥 /su ( 2ss 𝑦 ) ) )
18 16 17 bitri ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑦 ∈ ℕ0s𝑥 ∈ ℤs 𝐴 = ( 𝑥 /su ( 2ss 𝑦 ) ) )
19 elzs12 ( ( -us𝐴 ) ∈ ℤs[1/2] ↔ ∃ 𝑧 ∈ ℤs𝑦 ∈ ℕ0s ( -us𝐴 ) = ( 𝑧 /su ( 2ss 𝑦 ) ) )
20 rexcom ( ∃ 𝑧 ∈ ℤs𝑦 ∈ ℕ0s ( -us𝐴 ) = ( 𝑧 /su ( 2ss 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℕ0s𝑧 ∈ ℤs ( -us𝐴 ) = ( 𝑧 /su ( 2ss 𝑦 ) ) )
21 19 20 bitri ( ( -us𝐴 ) ∈ ℤs[1/2] ↔ ∃ 𝑦 ∈ ℕ0s𝑧 ∈ ℤs ( -us𝐴 ) = ( 𝑧 /su ( 2ss 𝑦 ) ) )
22 15 18 21 3imtr4i ( 𝐴 ∈ ℤs[1/2] → ( -us𝐴 ) ∈ ℤs[1/2] )