| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑧 = ( -us ‘ 𝑥 ) → ( 𝑧 /su ( 2s ↑s 𝑦 ) ) = ( ( -us ‘ 𝑥 ) /su ( 2s ↑s 𝑦 ) ) ) |
| 2 |
1
|
eqeq2d |
⊢ ( 𝑧 = ( -us ‘ 𝑥 ) → ( ( -us ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ↔ ( -us ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) = ( ( -us ‘ 𝑥 ) /su ( 2s ↑s 𝑦 ) ) ) ) |
| 3 |
|
znegscl |
⊢ ( 𝑥 ∈ ℤs → ( -us ‘ 𝑥 ) ∈ ℤs ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs ) → ( -us ‘ 𝑥 ) ∈ ℤs ) |
| 5 |
|
zno |
⊢ ( 𝑥 ∈ ℤs → 𝑥 ∈ No ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs ) → 𝑥 ∈ No ) |
| 7 |
|
simpl |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs ) → 𝑦 ∈ ℕ0s ) |
| 8 |
6 7
|
pw2divsnegd |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs ) → ( -us ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) = ( ( -us ‘ 𝑥 ) /su ( 2s ↑s 𝑦 ) ) ) |
| 9 |
2 4 8
|
rspcedvdw |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs ) → ∃ 𝑧 ∈ ℤs ( -us ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ( -us ‘ 𝐴 ) = ( -us ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ) |
| 11 |
10
|
eqeq1d |
⊢ ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ( ( -us ‘ 𝐴 ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ↔ ( -us ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ) |
| 12 |
11
|
rexbidv |
⊢ ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ( ∃ 𝑧 ∈ ℤs ( -us ‘ 𝐴 ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑧 ∈ ℤs ( -us ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ) |
| 13 |
9 12
|
syl5ibrcom |
⊢ ( ( 𝑦 ∈ ℕ0s ∧ 𝑥 ∈ ℤs ) → ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ∃ 𝑧 ∈ ℤs ( -us ‘ 𝐴 ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ) |
| 14 |
13
|
rexlimdva |
⊢ ( 𝑦 ∈ ℕ0s → ( ∃ 𝑥 ∈ ℤs 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ∃ 𝑧 ∈ ℤs ( -us ‘ 𝐴 ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ) |
| 15 |
14
|
reximia |
⊢ ( ∃ 𝑦 ∈ ℕ0s ∃ 𝑥 ∈ ℤs 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ∃ 𝑦 ∈ ℕ0s ∃ 𝑧 ∈ ℤs ( -us ‘ 𝐴 ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) |
| 16 |
|
elzs12 |
⊢ ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) |
| 17 |
|
rexcom |
⊢ ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℕ0s ∃ 𝑥 ∈ ℤs 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) |
| 18 |
16 17
|
bitri |
⊢ ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑦 ∈ ℕ0s ∃ 𝑥 ∈ ℤs 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) |
| 19 |
|
elzs12 |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℤs[1/2] ↔ ∃ 𝑧 ∈ ℤs ∃ 𝑦 ∈ ℕ0s ( -us ‘ 𝐴 ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) |
| 20 |
|
rexcom |
⊢ ( ∃ 𝑧 ∈ ℤs ∃ 𝑦 ∈ ℕ0s ( -us ‘ 𝐴 ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ↔ ∃ 𝑦 ∈ ℕ0s ∃ 𝑧 ∈ ℤs ( -us ‘ 𝐴 ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) |
| 21 |
19 20
|
bitri |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℤs[1/2] ↔ ∃ 𝑦 ∈ ℕ0s ∃ 𝑧 ∈ ℤs ( -us ‘ 𝐴 ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) |
| 22 |
15 18 21
|
3imtr4i |
⊢ ( 𝐴 ∈ ℤs[1/2] → ( -us ‘ 𝐴 ) ∈ ℤs[1/2] ) |