Description: A surreal is a dyadic fraction iff its negative is. (Contributed by Scott Fenton, 9-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zs12negsclb | |- ( A e. No -> ( A e. ZZ_s[1/2] <-> ( -us ` A ) e. ZZ_s[1/2] ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zs12negscl | |- ( A e. ZZ_s[1/2] -> ( -us ` A ) e. ZZ_s[1/2] ) |
|
| 2 | zs12negscl | |- ( ( -us ` A ) e. ZZ_s[1/2] -> ( -us ` ( -us ` A ) ) e. ZZ_s[1/2] ) |
|
| 3 | negnegs | |- ( A e. No -> ( -us ` ( -us ` A ) ) = A ) |
|
| 4 | 3 | eleq1d | |- ( A e. No -> ( ( -us ` ( -us ` A ) ) e. ZZ_s[1/2] <-> A e. ZZ_s[1/2] ) ) |
| 5 | 2 4 | imbitrid | |- ( A e. No -> ( ( -us ` A ) e. ZZ_s[1/2] -> A e. ZZ_s[1/2] ) ) |
| 6 | 1 5 | impbid2 | |- ( A e. No -> ( A e. ZZ_s[1/2] <-> ( -us ` A ) e. ZZ_s[1/2] ) ) |