| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simprl |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> z e. ZZ_s ) |
| 2 |
|
simpllr |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> 0s <_s A ) |
| 3 |
|
simprr |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> A = ( z /su ( 2s ^su p ) ) ) |
| 4 |
2 3
|
breqtrd |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> 0s <_s ( z /su ( 2s ^su p ) ) ) |
| 5 |
1
|
znod |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> z e. No ) |
| 6 |
|
simplr |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> p e. NN0_s ) |
| 7 |
5 6
|
pw2ge0divsd |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> ( 0s <_s z <-> 0s <_s ( z /su ( 2s ^su p ) ) ) ) |
| 8 |
4 7
|
mpbird |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> 0s <_s z ) |
| 9 |
|
eln0zs |
|- ( z e. NN0_s <-> ( z e. ZZ_s /\ 0s <_s z ) ) |
| 10 |
1 8 9
|
sylanbrc |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> z e. NN0_s ) |
| 11 |
|
simpr |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> z e. NN0_s ) |
| 12 |
|
2nns |
|- 2s e. NN_s |
| 13 |
|
simplr |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> p e. NN0_s ) |
| 14 |
|
nnexpscl |
|- ( ( 2s e. NN_s /\ p e. NN0_s ) -> ( 2s ^su p ) e. NN_s ) |
| 15 |
12 13 14
|
sylancr |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> ( 2s ^su p ) e. NN_s ) |
| 16 |
|
eucliddivs |
|- ( ( z e. NN0_s /\ ( 2s ^su p ) e. NN_s ) -> E. x e. NN0_s E. y e. NN0_s ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) /\ y |
| 17 |
11 15 16
|
syl2anc |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> E. x e. NN0_s E. y e. NN0_s ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) /\ y |
| 18 |
|
2sno |
|- 2s e. No |
| 19 |
|
simpllr |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> p e. NN0_s ) |
| 20 |
|
expscl |
|- ( ( 2s e. No /\ p e. NN0_s ) -> ( 2s ^su p ) e. No ) |
| 21 |
18 19 20
|
sylancr |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( 2s ^su p ) e. No ) |
| 22 |
|
simprl |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> x e. NN0_s ) |
| 23 |
22
|
n0snod |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> x e. No ) |
| 24 |
|
simprr |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> y e. NN0_s ) |
| 25 |
24
|
n0snod |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> y e. No ) |
| 26 |
25 19
|
pw2divscld |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( y /su ( 2s ^su p ) ) e. No ) |
| 27 |
21 23 26
|
addsdid |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) = ( ( ( 2s ^su p ) x.s x ) +s ( ( 2s ^su p ) x.s ( y /su ( 2s ^su p ) ) ) ) ) |
| 28 |
25 19
|
pw2divscan2d |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( 2s ^su p ) x.s ( y /su ( 2s ^su p ) ) ) = y ) |
| 29 |
28
|
oveq2d |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( ( 2s ^su p ) x.s x ) +s ( ( 2s ^su p ) x.s ( y /su ( 2s ^su p ) ) ) ) = ( ( ( 2s ^su p ) x.s x ) +s y ) ) |
| 30 |
27 29
|
eqtrd |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) = ( ( ( 2s ^su p ) x.s x ) +s y ) ) |
| 31 |
30
|
eqeq2d |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( z = ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) <-> z = ( ( ( 2s ^su p ) x.s x ) +s y ) ) ) |
| 32 |
|
eqcom |
|- ( z = ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) <-> ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) = z ) |
| 33 |
31 32
|
bitr3di |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) <-> ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) = z ) ) |
| 34 |
|
simplr |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> z e. NN0_s ) |
| 35 |
34
|
n0snod |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> z e. No ) |
| 36 |
23 26
|
addscld |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( x +s ( y /su ( 2s ^su p ) ) ) e. No ) |
| 37 |
35 36 19
|
pw2divsmuld |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) <-> ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) = z ) ) |
| 38 |
33 37
|
bitr4d |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) <-> ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) ) ) |
| 39 |
38
|
anbi1d |
|- ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) /\ y ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 40 |
39
|
2rexbidva |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> ( E. x e. NN0_s E. y e. NN0_s ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) /\ y E. x e. NN0_s E. y e. NN0_s ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 41 |
17 40
|
mpbid |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> E. x e. NN0_s E. y e. NN0_s ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 42 |
41
|
adantrl |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> E. x e. NN0_s E. y e. NN0_s ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 43 |
|
simprl |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> A = ( z /su ( 2s ^su p ) ) ) |
| 44 |
43
|
eqeq1d |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> ( A = ( x +s ( y /su ( 2s ^su p ) ) ) <-> ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) ) ) |
| 45 |
44
|
anbi1d |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> ( ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 46 |
45
|
2rexbidv |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> ( E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y E. x e. NN0_s E. y e. NN0_s ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 47 |
42 46
|
mpbird |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 48 |
47
|
expr |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ A = ( z /su ( 2s ^su p ) ) ) -> ( z e. NN0_s -> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 49 |
48
|
adantrl |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> ( z e. NN0_s -> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 50 |
10 49
|
mpd |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 51 |
50
|
rexlimdvaa |
|- ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) -> ( E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) -> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 52 |
|
oveq1 |
|- ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) -> ( z /su ( 2s ^su p ) ) = ( ( ( ( 2s ^su p ) x.s x ) +s y ) /su ( 2s ^su p ) ) ) |
| 53 |
52
|
eqeq2d |
|- ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) -> ( ( x +s ( y /su ( 2s ^su p ) ) ) = ( z /su ( 2s ^su p ) ) <-> ( x +s ( y /su ( 2s ^su p ) ) ) = ( ( ( ( 2s ^su p ) x.s x ) +s y ) /su ( 2s ^su p ) ) ) ) |
| 54 |
|
nnn0s |
|- ( 2s e. NN_s -> 2s e. NN0_s ) |
| 55 |
12 54
|
ax-mp |
|- 2s e. NN0_s |
| 56 |
|
simplr |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> p e. NN0_s ) |
| 57 |
|
n0expscl |
|- ( ( 2s e. NN0_s /\ p e. NN0_s ) -> ( 2s ^su p ) e. NN0_s ) |
| 58 |
55 56 57
|
sylancr |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( 2s ^su p ) e. NN0_s ) |
| 59 |
|
simprl |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> x e. NN0_s ) |
| 60 |
|
n0mulscl |
|- ( ( ( 2s ^su p ) e. NN0_s /\ x e. NN0_s ) -> ( ( 2s ^su p ) x.s x ) e. NN0_s ) |
| 61 |
58 59 60
|
syl2anc |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( 2s ^su p ) x.s x ) e. NN0_s ) |
| 62 |
|
simprr |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> y e. NN0_s ) |
| 63 |
|
n0addscl |
|- ( ( ( ( 2s ^su p ) x.s x ) e. NN0_s /\ y e. NN0_s ) -> ( ( ( 2s ^su p ) x.s x ) +s y ) e. NN0_s ) |
| 64 |
61 62 63
|
syl2anc |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( ( 2s ^su p ) x.s x ) +s y ) e. NN0_s ) |
| 65 |
64
|
n0zsd |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( ( 2s ^su p ) x.s x ) +s y ) e. ZZ_s ) |
| 66 |
59
|
n0snod |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> x e. No ) |
| 67 |
66 56
|
pw2divscan3d |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( ( 2s ^su p ) x.s x ) /su ( 2s ^su p ) ) = x ) |
| 68 |
67
|
eqcomd |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> x = ( ( ( 2s ^su p ) x.s x ) /su ( 2s ^su p ) ) ) |
| 69 |
68
|
oveq1d |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( x +s ( y /su ( 2s ^su p ) ) ) = ( ( ( ( 2s ^su p ) x.s x ) /su ( 2s ^su p ) ) +s ( y /su ( 2s ^su p ) ) ) ) |
| 70 |
18 56 20
|
sylancr |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( 2s ^su p ) e. No ) |
| 71 |
70 66
|
mulscld |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( 2s ^su p ) x.s x ) e. No ) |
| 72 |
62
|
n0snod |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> y e. No ) |
| 73 |
71 72 56
|
pw2divsdird |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( ( ( 2s ^su p ) x.s x ) +s y ) /su ( 2s ^su p ) ) = ( ( ( ( 2s ^su p ) x.s x ) /su ( 2s ^su p ) ) +s ( y /su ( 2s ^su p ) ) ) ) |
| 74 |
69 73
|
eqtr4d |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( x +s ( y /su ( 2s ^su p ) ) ) = ( ( ( ( 2s ^su p ) x.s x ) +s y ) /su ( 2s ^su p ) ) ) |
| 75 |
53 65 74
|
rspcedvdw |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> E. z e. ZZ_s ( x +s ( y /su ( 2s ^su p ) ) ) = ( z /su ( 2s ^su p ) ) ) |
| 76 |
|
eqeq1 |
|- ( A = ( x +s ( y /su ( 2s ^su p ) ) ) -> ( A = ( z /su ( 2s ^su p ) ) <-> ( x +s ( y /su ( 2s ^su p ) ) ) = ( z /su ( 2s ^su p ) ) ) ) |
| 77 |
76
|
rexbidv |
|- ( A = ( x +s ( y /su ( 2s ^su p ) ) ) -> ( E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) <-> E. z e. ZZ_s ( x +s ( y /su ( 2s ^su p ) ) ) = ( z /su ( 2s ^su p ) ) ) ) |
| 78 |
75 77
|
syl5ibrcom |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( A = ( x +s ( y /su ( 2s ^su p ) ) ) -> E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) ) ) |
| 79 |
78
|
adantrd |
|- ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) ) ) |
| 80 |
79
|
rexlimdvva |
|- ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) -> ( E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) ) ) |
| 81 |
51 80
|
impbid |
|- ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) -> ( E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) <-> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 82 |
81
|
rexbidva |
|- ( ( A e. No /\ 0s <_s A ) -> ( E. p e. NN0_s E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) <-> E. p e. NN0_s E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 83 |
|
elzs12 |
|- ( A e. ZZ_s[1/2] <-> E. z e. ZZ_s E. p e. NN0_s A = ( z /su ( 2s ^su p ) ) ) |
| 84 |
|
rexcom |
|- ( E. z e. ZZ_s E. p e. NN0_s A = ( z /su ( 2s ^su p ) ) <-> E. p e. NN0_s E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) ) |
| 85 |
83 84
|
bitri |
|- ( A e. ZZ_s[1/2] <-> E. p e. NN0_s E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) ) |
| 86 |
|
rexcom |
|- ( E. y e. NN0_s E. p e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y E. p e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 87 |
86
|
rexbii |
|- ( E. x e. NN0_s E. y e. NN0_s E. p e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y E. x e. NN0_s E. p e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 88 |
|
rexcom |
|- ( E. x e. NN0_s E. p e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y E. p e. NN0_s E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 89 |
87 88
|
bitri |
|- ( E. x e. NN0_s E. y e. NN0_s E. p e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y E. p e. NN0_s E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |
| 90 |
82 85 89
|
3bitr4g |
|- ( ( A e. No /\ 0s <_s A ) -> ( A e. ZZ_s[1/2] <-> E. x e. NN0_s E. y e. NN0_s E. p e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y |