Metamath Proof Explorer


Theorem zs12ge0

Description: An expression for non-negative dyadic rationals. (Contributed by Scott Fenton, 8-Nov-2025)

Ref Expression
Assertion zs12ge0
|- ( ( A e. No /\ 0s <_s A ) -> ( A e. ZZ_s[1/2] <-> E. x e. NN0_s E. y e. NN0_s E. p e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 

Proof

Step Hyp Ref Expression
1 simprl
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> z e. ZZ_s )
2 simpllr
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> 0s <_s A )
3 simprr
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> A = ( z /su ( 2s ^su p ) ) )
4 2 3 breqtrd
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> 0s <_s ( z /su ( 2s ^su p ) ) )
5 1 znod
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> z e. No )
6 simplr
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> p e. NN0_s )
7 5 6 pw2ge0divsd
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> ( 0s <_s z <-> 0s <_s ( z /su ( 2s ^su p ) ) ) )
8 4 7 mpbird
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> 0s <_s z )
9 eln0zs
 |-  ( z e. NN0_s <-> ( z e. ZZ_s /\ 0s <_s z ) )
10 1 8 9 sylanbrc
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> z e. NN0_s )
11 simpr
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> z e. NN0_s )
12 2nns
 |-  2s e. NN_s
13 simplr
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> p e. NN0_s )
14 nnexpscl
 |-  ( ( 2s e. NN_s /\ p e. NN0_s ) -> ( 2s ^su p ) e. NN_s )
15 12 13 14 sylancr
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> ( 2s ^su p ) e. NN_s )
16 eucliddivs
 |-  ( ( z e. NN0_s /\ ( 2s ^su p ) e. NN_s ) -> E. x e. NN0_s E. y e. NN0_s ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) /\ y 
17 11 15 16 syl2anc
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> E. x e. NN0_s E. y e. NN0_s ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) /\ y 
18 2sno
 |-  2s e. No
19 simpllr
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> p e. NN0_s )
20 expscl
 |-  ( ( 2s e. No /\ p e. NN0_s ) -> ( 2s ^su p ) e. No )
21 18 19 20 sylancr
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( 2s ^su p ) e. No )
22 simprl
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> x e. NN0_s )
23 22 n0snod
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> x e. No )
24 simprr
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> y e. NN0_s )
25 24 n0snod
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> y e. No )
26 25 19 pw2divscld
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( y /su ( 2s ^su p ) ) e. No )
27 21 23 26 addsdid
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) = ( ( ( 2s ^su p ) x.s x ) +s ( ( 2s ^su p ) x.s ( y /su ( 2s ^su p ) ) ) ) )
28 25 19 pw2divscan2d
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( 2s ^su p ) x.s ( y /su ( 2s ^su p ) ) ) = y )
29 28 oveq2d
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( ( 2s ^su p ) x.s x ) +s ( ( 2s ^su p ) x.s ( y /su ( 2s ^su p ) ) ) ) = ( ( ( 2s ^su p ) x.s x ) +s y ) )
30 27 29 eqtrd
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) = ( ( ( 2s ^su p ) x.s x ) +s y ) )
31 30 eqeq2d
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( z = ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) <-> z = ( ( ( 2s ^su p ) x.s x ) +s y ) ) )
32 eqcom
 |-  ( z = ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) <-> ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) = z )
33 31 32 bitr3di
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) <-> ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) = z ) )
34 simplr
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> z e. NN0_s )
35 34 n0snod
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> z e. No )
36 23 26 addscld
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( x +s ( y /su ( 2s ^su p ) ) ) e. No )
37 35 36 19 pw2divsmuld
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) <-> ( ( 2s ^su p ) x.s ( x +s ( y /su ( 2s ^su p ) ) ) ) = z ) )
38 33 37 bitr4d
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) <-> ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) ) )
39 38 anbi1d
 |-  ( ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) /\ y  ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
40 39 2rexbidva
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> ( E. x e. NN0_s E. y e. NN0_s ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) /\ y  E. x e. NN0_s E. y e. NN0_s ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
41 17 40 mpbid
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ z e. NN0_s ) -> E. x e. NN0_s E. y e. NN0_s ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
42 41 adantrl
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> E. x e. NN0_s E. y e. NN0_s ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
43 simprl
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> A = ( z /su ( 2s ^su p ) ) )
44 43 eqeq1d
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> ( A = ( x +s ( y /su ( 2s ^su p ) ) ) <-> ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) ) )
45 44 anbi1d
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> ( ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y  ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
46 45 2rexbidv
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> ( E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y  E. x e. NN0_s E. y e. NN0_s ( ( z /su ( 2s ^su p ) ) = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
47 42 46 mpbird
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( A = ( z /su ( 2s ^su p ) ) /\ z e. NN0_s ) ) -> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
48 47 expr
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ A = ( z /su ( 2s ^su p ) ) ) -> ( z e. NN0_s -> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
49 48 adantrl
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> ( z e. NN0_s -> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
50 10 49 mpd
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( z e. ZZ_s /\ A = ( z /su ( 2s ^su p ) ) ) ) -> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
51 50 rexlimdvaa
 |-  ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) -> ( E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) -> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
52 oveq1
 |-  ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) -> ( z /su ( 2s ^su p ) ) = ( ( ( ( 2s ^su p ) x.s x ) +s y ) /su ( 2s ^su p ) ) )
53 52 eqeq2d
 |-  ( z = ( ( ( 2s ^su p ) x.s x ) +s y ) -> ( ( x +s ( y /su ( 2s ^su p ) ) ) = ( z /su ( 2s ^su p ) ) <-> ( x +s ( y /su ( 2s ^su p ) ) ) = ( ( ( ( 2s ^su p ) x.s x ) +s y ) /su ( 2s ^su p ) ) ) )
54 nnn0s
 |-  ( 2s e. NN_s -> 2s e. NN0_s )
55 12 54 ax-mp
 |-  2s e. NN0_s
56 simplr
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> p e. NN0_s )
57 n0expscl
 |-  ( ( 2s e. NN0_s /\ p e. NN0_s ) -> ( 2s ^su p ) e. NN0_s )
58 55 56 57 sylancr
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( 2s ^su p ) e. NN0_s )
59 simprl
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> x e. NN0_s )
60 n0mulscl
 |-  ( ( ( 2s ^su p ) e. NN0_s /\ x e. NN0_s ) -> ( ( 2s ^su p ) x.s x ) e. NN0_s )
61 58 59 60 syl2anc
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( 2s ^su p ) x.s x ) e. NN0_s )
62 simprr
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> y e. NN0_s )
63 n0addscl
 |-  ( ( ( ( 2s ^su p ) x.s x ) e. NN0_s /\ y e. NN0_s ) -> ( ( ( 2s ^su p ) x.s x ) +s y ) e. NN0_s )
64 61 62 63 syl2anc
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( ( 2s ^su p ) x.s x ) +s y ) e. NN0_s )
65 64 n0zsd
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( ( 2s ^su p ) x.s x ) +s y ) e. ZZ_s )
66 59 n0snod
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> x e. No )
67 66 56 pw2divscan3d
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( ( 2s ^su p ) x.s x ) /su ( 2s ^su p ) ) = x )
68 67 eqcomd
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> x = ( ( ( 2s ^su p ) x.s x ) /su ( 2s ^su p ) ) )
69 68 oveq1d
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( x +s ( y /su ( 2s ^su p ) ) ) = ( ( ( ( 2s ^su p ) x.s x ) /su ( 2s ^su p ) ) +s ( y /su ( 2s ^su p ) ) ) )
70 18 56 20 sylancr
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( 2s ^su p ) e. No )
71 70 66 mulscld
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( 2s ^su p ) x.s x ) e. No )
72 62 n0snod
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> y e. No )
73 71 72 56 pw2divsdird
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( ( ( 2s ^su p ) x.s x ) +s y ) /su ( 2s ^su p ) ) = ( ( ( ( 2s ^su p ) x.s x ) /su ( 2s ^su p ) ) +s ( y /su ( 2s ^su p ) ) ) )
74 69 73 eqtr4d
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( x +s ( y /su ( 2s ^su p ) ) ) = ( ( ( ( 2s ^su p ) x.s x ) +s y ) /su ( 2s ^su p ) ) )
75 53 65 74 rspcedvdw
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> E. z e. ZZ_s ( x +s ( y /su ( 2s ^su p ) ) ) = ( z /su ( 2s ^su p ) ) )
76 eqeq1
 |-  ( A = ( x +s ( y /su ( 2s ^su p ) ) ) -> ( A = ( z /su ( 2s ^su p ) ) <-> ( x +s ( y /su ( 2s ^su p ) ) ) = ( z /su ( 2s ^su p ) ) ) )
77 76 rexbidv
 |-  ( A = ( x +s ( y /su ( 2s ^su p ) ) ) -> ( E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) <-> E. z e. ZZ_s ( x +s ( y /su ( 2s ^su p ) ) ) = ( z /su ( 2s ^su p ) ) ) )
78 75 77 syl5ibrcom
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( A = ( x +s ( y /su ( 2s ^su p ) ) ) -> E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) ) )
79 78 adantrd
 |-  ( ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) /\ ( x e. NN0_s /\ y e. NN0_s ) ) -> ( ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y  E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) ) )
80 79 rexlimdvva
 |-  ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) -> ( E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y  E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) ) )
81 51 80 impbid
 |-  ( ( ( A e. No /\ 0s <_s A ) /\ p e. NN0_s ) -> ( E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) <-> E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
82 81 rexbidva
 |-  ( ( A e. No /\ 0s <_s A ) -> ( E. p e. NN0_s E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) <-> E. p e. NN0_s E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
83 elzs12
 |-  ( A e. ZZ_s[1/2] <-> E. z e. ZZ_s E. p e. NN0_s A = ( z /su ( 2s ^su p ) ) )
84 rexcom
 |-  ( E. z e. ZZ_s E. p e. NN0_s A = ( z /su ( 2s ^su p ) ) <-> E. p e. NN0_s E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) )
85 83 84 bitri
 |-  ( A e. ZZ_s[1/2] <-> E. p e. NN0_s E. z e. ZZ_s A = ( z /su ( 2s ^su p ) ) )
86 rexcom
 |-  ( E. y e. NN0_s E. p e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y  E. p e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
87 86 rexbii
 |-  ( E. x e. NN0_s E. y e. NN0_s E. p e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y  E. x e. NN0_s E. p e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
88 rexcom
 |-  ( E. x e. NN0_s E. p e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y  E. p e. NN0_s E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
89 87 88 bitri
 |-  ( E. x e. NN0_s E. y e. NN0_s E. p e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y  E. p e. NN0_s E. x e. NN0_s E. y e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y 
90 82 85 89 3bitr4g
 |-  ( ( A e. No /\ 0s <_s A ) -> ( A e. ZZ_s[1/2] <-> E. x e. NN0_s E. y e. NN0_s E. p e. NN0_s ( A = ( x +s ( y /su ( 2s ^su p ) ) ) /\ y