Step |
Hyp |
Ref |
Expression |
1 |
|
elzs12 |
|- ( A e. ZZ_s[1/2] <-> E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) ) |
2 |
|
fvoveq1 |
|- ( z = x -> ( bday ` ( z /su ( 2s ^su y ) ) ) = ( bday ` ( x /su ( 2s ^su y ) ) ) ) |
3 |
2
|
eleq1d |
|- ( z = x -> ( ( bday ` ( z /su ( 2s ^su y ) ) ) e. _om <-> ( bday ` ( x /su ( 2s ^su y ) ) ) e. _om ) ) |
4 |
|
oveq2 |
|- ( m = 0s -> ( 2s ^su m ) = ( 2s ^su 0s ) ) |
5 |
|
2sno |
|- 2s e. No |
6 |
|
exps0 |
|- ( 2s e. No -> ( 2s ^su 0s ) = 1s ) |
7 |
5 6
|
ax-mp |
|- ( 2s ^su 0s ) = 1s |
8 |
4 7
|
eqtrdi |
|- ( m = 0s -> ( 2s ^su m ) = 1s ) |
9 |
8
|
oveq2d |
|- ( m = 0s -> ( z /su ( 2s ^su m ) ) = ( z /su 1s ) ) |
10 |
9
|
fveq2d |
|- ( m = 0s -> ( bday ` ( z /su ( 2s ^su m ) ) ) = ( bday ` ( z /su 1s ) ) ) |
11 |
10
|
eleq1d |
|- ( m = 0s -> ( ( bday ` ( z /su ( 2s ^su m ) ) ) e. _om <-> ( bday ` ( z /su 1s ) ) e. _om ) ) |
12 |
11
|
ralbidv |
|- ( m = 0s -> ( A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su m ) ) ) e. _om <-> A. z e. ZZ_s ( bday ` ( z /su 1s ) ) e. _om ) ) |
13 |
|
oveq2 |
|- ( m = n -> ( 2s ^su m ) = ( 2s ^su n ) ) |
14 |
13
|
oveq2d |
|- ( m = n -> ( z /su ( 2s ^su m ) ) = ( z /su ( 2s ^su n ) ) ) |
15 |
14
|
fveq2d |
|- ( m = n -> ( bday ` ( z /su ( 2s ^su m ) ) ) = ( bday ` ( z /su ( 2s ^su n ) ) ) ) |
16 |
15
|
eleq1d |
|- ( m = n -> ( ( bday ` ( z /su ( 2s ^su m ) ) ) e. _om <-> ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) ) |
17 |
16
|
ralbidv |
|- ( m = n -> ( A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su m ) ) ) e. _om <-> A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) ) |
18 |
|
oveq2 |
|- ( m = ( n +s 1s ) -> ( 2s ^su m ) = ( 2s ^su ( n +s 1s ) ) ) |
19 |
18
|
oveq2d |
|- ( m = ( n +s 1s ) -> ( z /su ( 2s ^su m ) ) = ( z /su ( 2s ^su ( n +s 1s ) ) ) ) |
20 |
19
|
fveq2d |
|- ( m = ( n +s 1s ) -> ( bday ` ( z /su ( 2s ^su m ) ) ) = ( bday ` ( z /su ( 2s ^su ( n +s 1s ) ) ) ) ) |
21 |
20
|
eleq1d |
|- ( m = ( n +s 1s ) -> ( ( bday ` ( z /su ( 2s ^su m ) ) ) e. _om <-> ( bday ` ( z /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
22 |
21
|
ralbidv |
|- ( m = ( n +s 1s ) -> ( A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su m ) ) ) e. _om <-> A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
23 |
|
fvoveq1 |
|- ( z = w -> ( bday ` ( z /su ( 2s ^su ( n +s 1s ) ) ) ) = ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) ) |
24 |
23
|
eleq1d |
|- ( z = w -> ( ( bday ` ( z /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om <-> ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
25 |
24
|
cbvralvw |
|- ( A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om <-> A. w e. ZZ_s ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) |
26 |
22 25
|
bitrdi |
|- ( m = ( n +s 1s ) -> ( A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su m ) ) ) e. _om <-> A. w e. ZZ_s ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
27 |
|
oveq2 |
|- ( m = y -> ( 2s ^su m ) = ( 2s ^su y ) ) |
28 |
27
|
oveq2d |
|- ( m = y -> ( z /su ( 2s ^su m ) ) = ( z /su ( 2s ^su y ) ) ) |
29 |
28
|
fveq2d |
|- ( m = y -> ( bday ` ( z /su ( 2s ^su m ) ) ) = ( bday ` ( z /su ( 2s ^su y ) ) ) ) |
30 |
29
|
eleq1d |
|- ( m = y -> ( ( bday ` ( z /su ( 2s ^su m ) ) ) e. _om <-> ( bday ` ( z /su ( 2s ^su y ) ) ) e. _om ) ) |
31 |
30
|
ralbidv |
|- ( m = y -> ( A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su m ) ) ) e. _om <-> A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su y ) ) ) e. _om ) ) |
32 |
|
zno |
|- ( z e. ZZ_s -> z e. No ) |
33 |
|
divs1 |
|- ( z e. No -> ( z /su 1s ) = z ) |
34 |
32 33
|
syl |
|- ( z e. ZZ_s -> ( z /su 1s ) = z ) |
35 |
34
|
fveq2d |
|- ( z e. ZZ_s -> ( bday ` ( z /su 1s ) ) = ( bday ` z ) ) |
36 |
|
zsbday |
|- ( z e. ZZ_s -> ( bday ` z ) e. _om ) |
37 |
35 36
|
eqeltrd |
|- ( z e. ZZ_s -> ( bday ` ( z /su 1s ) ) e. _om ) |
38 |
37
|
rgen |
|- A. z e. ZZ_s ( bday ` ( z /su 1s ) ) e. _om |
39 |
|
zseo |
|- ( w e. ZZ_s -> ( E. t e. ZZ_s w = ( 2s x.s t ) \/ E. t e. ZZ_s w = ( ( 2s x.s t ) +s 1s ) ) ) |
40 |
|
expsp1 |
|- ( ( 2s e. No /\ n e. NN0_s ) -> ( 2s ^su ( n +s 1s ) ) = ( ( 2s ^su n ) x.s 2s ) ) |
41 |
5 40
|
mpan |
|- ( n e. NN0_s -> ( 2s ^su ( n +s 1s ) ) = ( ( 2s ^su n ) x.s 2s ) ) |
42 |
41
|
adantr |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( 2s ^su ( n +s 1s ) ) = ( ( 2s ^su n ) x.s 2s ) ) |
43 |
42
|
oveq2d |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( ( 2s x.s t ) /su ( 2s ^su ( n +s 1s ) ) ) = ( ( 2s x.s t ) /su ( ( 2s ^su n ) x.s 2s ) ) ) |
44 |
5
|
a1i |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> 2s e. No ) |
45 |
|
zno |
|- ( t e. ZZ_s -> t e. No ) |
46 |
45
|
adantl |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> t e. No ) |
47 |
44 46
|
mulscld |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( 2s x.s t ) e. No ) |
48 |
|
expscl |
|- ( ( 2s e. No /\ n e. NN0_s ) -> ( 2s ^su n ) e. No ) |
49 |
5 48
|
mpan |
|- ( n e. NN0_s -> ( 2s ^su n ) e. No ) |
50 |
49
|
adantr |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( 2s ^su n ) e. No ) |
51 |
|
2ne0s |
|- 2s =/= 0s |
52 |
|
expsne0 |
|- ( ( 2s e. No /\ 2s =/= 0s /\ n e. NN0_s ) -> ( 2s ^su n ) =/= 0s ) |
53 |
5 51 52
|
mp3an12 |
|- ( n e. NN0_s -> ( 2s ^su n ) =/= 0s ) |
54 |
53
|
adantr |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( 2s ^su n ) =/= 0s ) |
55 |
51
|
a1i |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> 2s =/= 0s ) |
56 |
47 50 44 54 55
|
divdivs1d |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( ( ( 2s x.s t ) /su ( 2s ^su n ) ) /su 2s ) = ( ( 2s x.s t ) /su ( ( 2s ^su n ) x.s 2s ) ) ) |
57 |
44 46 50 54
|
divsassd |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( ( 2s x.s t ) /su ( 2s ^su n ) ) = ( 2s x.s ( t /su ( 2s ^su n ) ) ) ) |
58 |
57
|
oveq1d |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( ( ( 2s x.s t ) /su ( 2s ^su n ) ) /su 2s ) = ( ( 2s x.s ( t /su ( 2s ^su n ) ) ) /su 2s ) ) |
59 |
43 56 58
|
3eqtr2d |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( ( 2s x.s t ) /su ( 2s ^su ( n +s 1s ) ) ) = ( ( 2s x.s ( t /su ( 2s ^su n ) ) ) /su 2s ) ) |
60 |
46 50 54
|
divscld |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( t /su ( 2s ^su n ) ) e. No ) |
61 |
60 44 55
|
divscan3d |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( ( 2s x.s ( t /su ( 2s ^su n ) ) ) /su 2s ) = ( t /su ( 2s ^su n ) ) ) |
62 |
59 61
|
eqtrd |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( ( 2s x.s t ) /su ( 2s ^su ( n +s 1s ) ) ) = ( t /su ( 2s ^su n ) ) ) |
63 |
62
|
fveq2d |
|- ( ( n e. NN0_s /\ t e. ZZ_s ) -> ( bday ` ( ( 2s x.s t ) /su ( 2s ^su ( n +s 1s ) ) ) ) = ( bday ` ( t /su ( 2s ^su n ) ) ) ) |
64 |
63
|
adantlr |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( bday ` ( ( 2s x.s t ) /su ( 2s ^su ( n +s 1s ) ) ) ) = ( bday ` ( t /su ( 2s ^su n ) ) ) ) |
65 |
|
fvoveq1 |
|- ( z = t -> ( bday ` ( z /su ( 2s ^su n ) ) ) = ( bday ` ( t /su ( 2s ^su n ) ) ) ) |
66 |
65
|
eleq1d |
|- ( z = t -> ( ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om <-> ( bday ` ( t /su ( 2s ^su n ) ) ) e. _om ) ) |
67 |
66
|
rspccva |
|- ( ( A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om /\ t e. ZZ_s ) -> ( bday ` ( t /su ( 2s ^su n ) ) ) e. _om ) |
68 |
67
|
adantll |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( bday ` ( t /su ( 2s ^su n ) ) ) e. _om ) |
69 |
64 68
|
eqeltrd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( bday ` ( ( 2s x.s t ) /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) |
70 |
|
fvoveq1 |
|- ( w = ( 2s x.s t ) -> ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) = ( bday ` ( ( 2s x.s t ) /su ( 2s ^su ( n +s 1s ) ) ) ) ) |
71 |
70
|
eleq1d |
|- ( w = ( 2s x.s t ) -> ( ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om <-> ( bday ` ( ( 2s x.s t ) /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
72 |
69 71
|
syl5ibrcom |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( w = ( 2s x.s t ) -> ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
73 |
72
|
rexlimdva |
|- ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) -> ( E. t e. ZZ_s w = ( 2s x.s t ) -> ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
74 |
45
|
adantl |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> t e. No ) |
75 |
|
no2times |
|- ( t e. No -> ( 2s x.s t ) = ( t +s t ) ) |
76 |
74 75
|
syl |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( 2s x.s t ) = ( t +s t ) ) |
77 |
76
|
oveq1d |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( 2s x.s t ) +s 1s ) = ( ( t +s t ) +s 1s ) ) |
78 |
|
1sno |
|- 1s e. No |
79 |
78
|
a1i |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> 1s e. No ) |
80 |
74 74 79
|
addsassd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( t +s t ) +s 1s ) = ( t +s ( t +s 1s ) ) ) |
81 |
77 80
|
eqtrd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( 2s x.s t ) +s 1s ) = ( t +s ( t +s 1s ) ) ) |
82 |
81
|
oveq1d |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( ( 2s x.s t ) +s 1s ) /su ( 2s ^su ( n +s 1s ) ) ) = ( ( t +s ( t +s 1s ) ) /su ( 2s ^su ( n +s 1s ) ) ) ) |
83 |
74 79
|
addscld |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( t +s 1s ) e. No ) |
84 |
|
simpll |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> n e. NN0_s ) |
85 |
74
|
sltp1d |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> t |
86 |
|
2nns |
|- 2s e. NN_s |
87 |
|
nnzs |
|- ( 2s e. NN_s -> 2s e. ZZ_s ) |
88 |
86 87
|
mp1i |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> 2s e. ZZ_s ) |
89 |
|
simpr |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> t e. ZZ_s ) |
90 |
88 89
|
zmulscld |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( 2s x.s t ) e. ZZ_s ) |
91 |
90
|
znod |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( 2s x.s t ) e. No ) |
92 |
|
pncans |
|- ( ( ( 2s x.s t ) e. No /\ 1s e. No ) -> ( ( ( 2s x.s t ) +s 1s ) -s 1s ) = ( 2s x.s t ) ) |
93 |
91 78 92
|
sylancl |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( ( 2s x.s t ) +s 1s ) -s 1s ) = ( 2s x.s t ) ) |
94 |
93
|
eqcomd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( 2s x.s t ) = ( ( ( 2s x.s t ) +s 1s ) -s 1s ) ) |
95 |
94
|
sneqd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> { ( 2s x.s t ) } = { ( ( ( 2s x.s t ) +s 1s ) -s 1s ) } ) |
96 |
|
mulsrid |
|- ( 2s e. No -> ( 2s x.s 1s ) = 2s ) |
97 |
5 96
|
ax-mp |
|- ( 2s x.s 1s ) = 2s |
98 |
|
1p1e2s |
|- ( 1s +s 1s ) = 2s |
99 |
97 98
|
eqtr4i |
|- ( 2s x.s 1s ) = ( 1s +s 1s ) |
100 |
99
|
oveq2i |
|- ( ( 2s x.s t ) +s ( 2s x.s 1s ) ) = ( ( 2s x.s t ) +s ( 1s +s 1s ) ) |
101 |
5
|
a1i |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> 2s e. No ) |
102 |
101 74 79
|
addsdid |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( 2s x.s ( t +s 1s ) ) = ( ( 2s x.s t ) +s ( 2s x.s 1s ) ) ) |
103 |
91 79 79
|
addsassd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( ( 2s x.s t ) +s 1s ) +s 1s ) = ( ( 2s x.s t ) +s ( 1s +s 1s ) ) ) |
104 |
100 102 103
|
3eqtr4a |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( 2s x.s ( t +s 1s ) ) = ( ( ( 2s x.s t ) +s 1s ) +s 1s ) ) |
105 |
104
|
sneqd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> { ( 2s x.s ( t +s 1s ) ) } = { ( ( ( 2s x.s t ) +s 1s ) +s 1s ) } ) |
106 |
95 105
|
oveq12d |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( { ( 2s x.s t ) } |s { ( 2s x.s ( t +s 1s ) ) } ) = ( { ( ( ( 2s x.s t ) +s 1s ) -s 1s ) } |s { ( ( ( 2s x.s t ) +s 1s ) +s 1s ) } ) ) |
107 |
|
1zs |
|- 1s e. ZZ_s |
108 |
107
|
a1i |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> 1s e. ZZ_s ) |
109 |
90 108
|
zaddscld |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( 2s x.s t ) +s 1s ) e. ZZ_s ) |
110 |
|
zscut |
|- ( ( ( 2s x.s t ) +s 1s ) e. ZZ_s -> ( ( 2s x.s t ) +s 1s ) = ( { ( ( ( 2s x.s t ) +s 1s ) -s 1s ) } |s { ( ( ( 2s x.s t ) +s 1s ) +s 1s ) } ) ) |
111 |
109 110
|
syl |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( 2s x.s t ) +s 1s ) = ( { ( ( ( 2s x.s t ) +s 1s ) -s 1s ) } |s { ( ( ( 2s x.s t ) +s 1s ) +s 1s ) } ) ) |
112 |
106 111 81
|
3eqtr2d |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( { ( 2s x.s t ) } |s { ( 2s x.s ( t +s 1s ) ) } ) = ( t +s ( t +s 1s ) ) ) |
113 |
74 83 84 85 112
|
pw2cut |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) = ( ( t +s ( t +s 1s ) ) /su ( 2s ^su ( n +s 1s ) ) ) ) |
114 |
82 113
|
eqtr4d |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( ( 2s x.s t ) +s 1s ) /su ( 2s ^su ( n +s 1s ) ) ) = ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) |
115 |
114
|
fveq2d |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( bday ` ( ( ( 2s x.s t ) +s 1s ) /su ( 2s ^su ( n +s 1s ) ) ) ) = ( bday ` ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) ) |
116 |
49
|
ad2antrr |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( 2s ^su n ) e. No ) |
117 |
53
|
ad2antrr |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( 2s ^su n ) =/= 0s ) |
118 |
74 116 117
|
divscld |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( t /su ( 2s ^su n ) ) e. No ) |
119 |
83 116 117
|
divscld |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( t +s 1s ) /su ( 2s ^su n ) ) e. No ) |
120 |
74 116 117
|
divscan2d |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( 2s ^su n ) x.s ( t /su ( 2s ^su n ) ) ) = t ) |
121 |
120 85
|
eqbrtrd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( 2s ^su n ) x.s ( t /su ( 2s ^su n ) ) ) |
122 |
|
nnsgt0 |
|- ( 2s e. NN_s -> 0s |
123 |
86 122
|
ax-mp |
|- 0s |
124 |
|
expsgt0 |
|- ( ( 2s e. No /\ n e. NN0_s /\ 0s 0s |
125 |
5 123 124
|
mp3an13 |
|- ( n e. NN0_s -> 0s |
126 |
125
|
ad2antrr |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> 0s |
127 |
118 83 116 126
|
sltmuldiv2d |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( ( 2s ^su n ) x.s ( t /su ( 2s ^su n ) ) ) ( t /su ( 2s ^su n ) ) |
128 |
121 127
|
mpbid |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( t /su ( 2s ^su n ) ) |
129 |
118 119 128
|
ssltsn |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> { ( t /su ( 2s ^su n ) ) } < |
130 |
|
imaundi |
|- ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) = ( ( bday " { ( t /su ( 2s ^su n ) ) } ) u. ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) |
131 |
130
|
unieqi |
|- U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) = U. ( ( bday " { ( t /su ( 2s ^su n ) ) } ) u. ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) |
132 |
|
uniun |
|- U. ( ( bday " { ( t /su ( 2s ^su n ) ) } ) u. ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) = ( U. ( bday " { ( t /su ( 2s ^su n ) ) } ) u. U. ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) |
133 |
131 132
|
eqtri |
|- U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) = ( U. ( bday " { ( t /su ( 2s ^su n ) ) } ) u. U. ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) |
134 |
|
bdayfn |
|- bday Fn No |
135 |
|
fnsnfv |
|- ( ( bday Fn No /\ ( t /su ( 2s ^su n ) ) e. No ) -> { ( bday ` ( t /su ( 2s ^su n ) ) ) } = ( bday " { ( t /su ( 2s ^su n ) ) } ) ) |
136 |
134 118 135
|
sylancr |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> { ( bday ` ( t /su ( 2s ^su n ) ) ) } = ( bday " { ( t /su ( 2s ^su n ) ) } ) ) |
137 |
136
|
unieqd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> U. { ( bday ` ( t /su ( 2s ^su n ) ) ) } = U. ( bday " { ( t /su ( 2s ^su n ) ) } ) ) |
138 |
|
fvex |
|- ( bday ` ( t /su ( 2s ^su n ) ) ) e. _V |
139 |
138
|
unisn |
|- U. { ( bday ` ( t /su ( 2s ^su n ) ) ) } = ( bday ` ( t /su ( 2s ^su n ) ) ) |
140 |
137 139
|
eqtr3di |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> U. ( bday " { ( t /su ( 2s ^su n ) ) } ) = ( bday ` ( t /su ( 2s ^su n ) ) ) ) |
141 |
140 68
|
eqeltrd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> U. ( bday " { ( t /su ( 2s ^su n ) ) } ) e. _om ) |
142 |
|
fnsnfv |
|- ( ( bday Fn No /\ ( ( t +s 1s ) /su ( 2s ^su n ) ) e. No ) -> { ( bday ` ( ( t +s 1s ) /su ( 2s ^su n ) ) ) } = ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) |
143 |
134 119 142
|
sylancr |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> { ( bday ` ( ( t +s 1s ) /su ( 2s ^su n ) ) ) } = ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) |
144 |
143
|
unieqd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> U. { ( bday ` ( ( t +s 1s ) /su ( 2s ^su n ) ) ) } = U. ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) |
145 |
|
fvex |
|- ( bday ` ( ( t +s 1s ) /su ( 2s ^su n ) ) ) e. _V |
146 |
145
|
unisn |
|- U. { ( bday ` ( ( t +s 1s ) /su ( 2s ^su n ) ) ) } = ( bday ` ( ( t +s 1s ) /su ( 2s ^su n ) ) ) |
147 |
144 146
|
eqtr3di |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> U. ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) = ( bday ` ( ( t +s 1s ) /su ( 2s ^su n ) ) ) ) |
148 |
|
fvoveq1 |
|- ( z = ( t +s 1s ) -> ( bday ` ( z /su ( 2s ^su n ) ) ) = ( bday ` ( ( t +s 1s ) /su ( 2s ^su n ) ) ) ) |
149 |
148
|
eleq1d |
|- ( z = ( t +s 1s ) -> ( ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om <-> ( bday ` ( ( t +s 1s ) /su ( 2s ^su n ) ) ) e. _om ) ) |
150 |
|
simplr |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) |
151 |
89 108
|
zaddscld |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( t +s 1s ) e. ZZ_s ) |
152 |
149 150 151
|
rspcdva |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( bday ` ( ( t +s 1s ) /su ( 2s ^su n ) ) ) e. _om ) |
153 |
147 152
|
eqeltrd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> U. ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) e. _om ) |
154 |
|
omun |
|- ( ( U. ( bday " { ( t /su ( 2s ^su n ) ) } ) e. _om /\ U. ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) e. _om ) -> ( U. ( bday " { ( t /su ( 2s ^su n ) ) } ) u. U. ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. _om ) |
155 |
141 153 154
|
syl2anc |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( U. ( bday " { ( t /su ( 2s ^su n ) ) } ) u. U. ( bday " { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. _om ) |
156 |
133 155
|
eqeltrid |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. _om ) |
157 |
|
peano2 |
|- ( U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. _om -> suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. _om ) |
158 |
156 157
|
syl |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. _om ) |
159 |
|
nnon |
|- ( suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. _om -> suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. On ) |
160 |
158 159
|
syl |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. On ) |
161 |
|
imassrn |
|- ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) C_ ran bday |
162 |
|
bdayrn |
|- ran bday = On |
163 |
161 162
|
sseqtri |
|- ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) C_ On |
164 |
|
onsucuni |
|- ( ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) C_ On -> ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) C_ suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) ) |
165 |
163 164
|
mp1i |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) C_ suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) ) |
166 |
|
scutbdaybnd |
|- ( ( { ( t /su ( 2s ^su n ) ) } < ( bday ` ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) C_ suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) ) |
167 |
129 160 165 166
|
syl3anc |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( bday ` ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) C_ suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) ) |
168 |
|
bdayelon |
|- ( bday ` ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. On |
169 |
|
onsssuc |
|- ( ( ( bday ` ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. On /\ suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. On ) -> ( ( bday ` ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) C_ suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) <-> ( bday ` ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. suc suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) ) ) |
170 |
168 160 169
|
sylancr |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( ( bday ` ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) C_ suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) <-> ( bday ` ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. suc suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) ) ) |
171 |
167 170
|
mpbid |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( bday ` ( { ( t /su ( 2s ^su n ) ) } |s { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. suc suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) ) |
172 |
115 171
|
eqeltrd |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( bday ` ( ( ( 2s x.s t ) +s 1s ) /su ( 2s ^su ( n +s 1s ) ) ) ) e. suc suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) ) |
173 |
|
peano2 |
|- ( suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. _om -> suc suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. _om ) |
174 |
158 173
|
syl |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> suc suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. _om ) |
175 |
|
elnn |
|- ( ( ( bday ` ( ( ( 2s x.s t ) +s 1s ) /su ( 2s ^su ( n +s 1s ) ) ) ) e. suc suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) /\ suc suc U. ( bday " ( { ( t /su ( 2s ^su n ) ) } u. { ( ( t +s 1s ) /su ( 2s ^su n ) ) } ) ) e. _om ) -> ( bday ` ( ( ( 2s x.s t ) +s 1s ) /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) |
176 |
172 174 175
|
syl2anc |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( bday ` ( ( ( 2s x.s t ) +s 1s ) /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) |
177 |
|
fvoveq1 |
|- ( w = ( ( 2s x.s t ) +s 1s ) -> ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) = ( bday ` ( ( ( 2s x.s t ) +s 1s ) /su ( 2s ^su ( n +s 1s ) ) ) ) ) |
178 |
177
|
eleq1d |
|- ( w = ( ( 2s x.s t ) +s 1s ) -> ( ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om <-> ( bday ` ( ( ( 2s x.s t ) +s 1s ) /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
179 |
176 178
|
syl5ibrcom |
|- ( ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) /\ t e. ZZ_s ) -> ( w = ( ( 2s x.s t ) +s 1s ) -> ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
180 |
179
|
rexlimdva |
|- ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) -> ( E. t e. ZZ_s w = ( ( 2s x.s t ) +s 1s ) -> ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
181 |
73 180
|
jaod |
|- ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) -> ( ( E. t e. ZZ_s w = ( 2s x.s t ) \/ E. t e. ZZ_s w = ( ( 2s x.s t ) +s 1s ) ) -> ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
182 |
39 181
|
syl5 |
|- ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) -> ( w e. ZZ_s -> ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
183 |
182
|
ralrimiv |
|- ( ( n e. NN0_s /\ A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om ) -> A. w e. ZZ_s ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) |
184 |
183
|
ex |
|- ( n e. NN0_s -> ( A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su n ) ) ) e. _om -> A. w e. ZZ_s ( bday ` ( w /su ( 2s ^su ( n +s 1s ) ) ) ) e. _om ) ) |
185 |
12 17 26 31 38 184
|
n0sind |
|- ( y e. NN0_s -> A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su y ) ) ) e. _om ) |
186 |
185
|
adantl |
|- ( ( x e. ZZ_s /\ y e. NN0_s ) -> A. z e. ZZ_s ( bday ` ( z /su ( 2s ^su y ) ) ) e. _om ) |
187 |
|
simpl |
|- ( ( x e. ZZ_s /\ y e. NN0_s ) -> x e. ZZ_s ) |
188 |
3 186 187
|
rspcdva |
|- ( ( x e. ZZ_s /\ y e. NN0_s ) -> ( bday ` ( x /su ( 2s ^su y ) ) ) e. _om ) |
189 |
|
fveq2 |
|- ( A = ( x /su ( 2s ^su y ) ) -> ( bday ` A ) = ( bday ` ( x /su ( 2s ^su y ) ) ) ) |
190 |
189
|
eleq1d |
|- ( A = ( x /su ( 2s ^su y ) ) -> ( ( bday ` A ) e. _om <-> ( bday ` ( x /su ( 2s ^su y ) ) ) e. _om ) ) |
191 |
188 190
|
syl5ibrcom |
|- ( ( x e. ZZ_s /\ y e. NN0_s ) -> ( A = ( x /su ( 2s ^su y ) ) -> ( bday ` A ) e. _om ) ) |
192 |
191
|
rexlimivv |
|- ( E. x e. ZZ_s E. y e. NN0_s A = ( x /su ( 2s ^su y ) ) -> ( bday ` A ) e. _om ) |
193 |
1 192
|
sylbi |
|- ( A e. ZZ_s[1/2] -> ( bday ` A ) e. _om ) |