Step |
Hyp |
Ref |
Expression |
1 |
|
elzs12 |
⊢ ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) |
2 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑥 → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) = ( bday ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ) |
3 |
2
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) ) |
4 |
|
oveq2 |
⊢ ( 𝑚 = 0s → ( 2s ↑s 𝑚 ) = ( 2s ↑s 0s ) ) |
5 |
|
2sno |
⊢ 2s ∈ No |
6 |
|
exps0 |
⊢ ( 2s ∈ No → ( 2s ↑s 0s ) = 1s ) |
7 |
5 6
|
ax-mp |
⊢ ( 2s ↑s 0s ) = 1s |
8 |
4 7
|
eqtrdi |
⊢ ( 𝑚 = 0s → ( 2s ↑s 𝑚 ) = 1s ) |
9 |
8
|
oveq2d |
⊢ ( 𝑚 = 0s → ( 𝑧 /su ( 2s ↑s 𝑚 ) ) = ( 𝑧 /su 1s ) ) |
10 |
9
|
fveq2d |
⊢ ( 𝑚 = 0s → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) = ( bday ‘ ( 𝑧 /su 1s ) ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑚 = 0s → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑧 /su 1s ) ) ∈ ω ) ) |
12 |
11
|
ralbidv |
⊢ ( 𝑚 = 0s → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su 1s ) ) ∈ ω ) ) |
13 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 2s ↑s 𝑚 ) = ( 2s ↑s 𝑛 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 /su ( 2s ↑s 𝑚 ) ) = ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) |
15 |
14
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) = ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ) |
16 |
15
|
eleq1d |
⊢ ( 𝑚 = 𝑛 → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ) |
17 |
16
|
ralbidv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ) |
18 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( 2s ↑s 𝑚 ) = ( 2s ↑s ( 𝑛 +s 1s ) ) ) |
19 |
18
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( 𝑧 /su ( 2s ↑s 𝑚 ) ) = ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) = ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
21 |
20
|
eleq1d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
22 |
21
|
ralbidv |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
23 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑤 → ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
24 |
23
|
eleq1d |
⊢ ( 𝑧 = 𝑤 → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
25 |
24
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ↔ ∀ 𝑤 ∈ ℤs ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) |
26 |
22 25
|
bitrdi |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ∀ 𝑤 ∈ ℤs ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
27 |
|
oveq2 |
⊢ ( 𝑚 = 𝑦 → ( 2s ↑s 𝑚 ) = ( 2s ↑s 𝑦 ) ) |
28 |
27
|
oveq2d |
⊢ ( 𝑚 = 𝑦 → ( 𝑧 /su ( 2s ↑s 𝑚 ) ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝑚 = 𝑦 → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) = ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ) |
30 |
29
|
eleq1d |
⊢ ( 𝑚 = 𝑦 → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) ) |
31 |
30
|
ralbidv |
⊢ ( 𝑚 = 𝑦 → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) ) |
32 |
|
zno |
⊢ ( 𝑧 ∈ ℤs → 𝑧 ∈ No ) |
33 |
|
divs1 |
⊢ ( 𝑧 ∈ No → ( 𝑧 /su 1s ) = 𝑧 ) |
34 |
32 33
|
syl |
⊢ ( 𝑧 ∈ ℤs → ( 𝑧 /su 1s ) = 𝑧 ) |
35 |
34
|
fveq2d |
⊢ ( 𝑧 ∈ ℤs → ( bday ‘ ( 𝑧 /su 1s ) ) = ( bday ‘ 𝑧 ) ) |
36 |
|
zsbday |
⊢ ( 𝑧 ∈ ℤs → ( bday ‘ 𝑧 ) ∈ ω ) |
37 |
35 36
|
eqeltrd |
⊢ ( 𝑧 ∈ ℤs → ( bday ‘ ( 𝑧 /su 1s ) ) ∈ ω ) |
38 |
37
|
rgen |
⊢ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su 1s ) ) ∈ ω |
39 |
|
zseo |
⊢ ( 𝑤 ∈ ℤs → ( ∃ 𝑡 ∈ ℤs 𝑤 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℤs 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
40 |
|
expsp1 |
⊢ ( ( 2s ∈ No ∧ 𝑛 ∈ ℕ0s ) → ( 2s ↑s ( 𝑛 +s 1s ) ) = ( ( 2s ↑s 𝑛 ) ·s 2s ) ) |
41 |
5 40
|
mpan |
⊢ ( 𝑛 ∈ ℕ0s → ( 2s ↑s ( 𝑛 +s 1s ) ) = ( ( 2s ↑s 𝑛 ) ·s 2s ) ) |
42 |
41
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( 2s ↑s ( 𝑛 +s 1s ) ) = ( ( 2s ↑s 𝑛 ) ·s 2s ) ) |
43 |
42
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( 2s ·s 𝑡 ) /su ( ( 2s ↑s 𝑛 ) ·s 2s ) ) ) |
44 |
5
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → 2s ∈ No ) |
45 |
|
zno |
⊢ ( 𝑡 ∈ ℤs → 𝑡 ∈ No ) |
46 |
45
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → 𝑡 ∈ No ) |
47 |
44 46
|
mulscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( 2s ·s 𝑡 ) ∈ No ) |
48 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑛 ∈ ℕ0s ) → ( 2s ↑s 𝑛 ) ∈ No ) |
49 |
5 48
|
mpan |
⊢ ( 𝑛 ∈ ℕ0s → ( 2s ↑s 𝑛 ) ∈ No ) |
50 |
49
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( 2s ↑s 𝑛 ) ∈ No ) |
51 |
|
2ne0s |
⊢ 2s ≠ 0s |
52 |
|
expsne0 |
⊢ ( ( 2s ∈ No ∧ 2s ≠ 0s ∧ 𝑛 ∈ ℕ0s ) → ( 2s ↑s 𝑛 ) ≠ 0s ) |
53 |
5 51 52
|
mp3an12 |
⊢ ( 𝑛 ∈ ℕ0s → ( 2s ↑s 𝑛 ) ≠ 0s ) |
54 |
53
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( 2s ↑s 𝑛 ) ≠ 0s ) |
55 |
51
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → 2s ≠ 0s ) |
56 |
47 50 44 54 55
|
divdivs1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) /su ( 2s ↑s 𝑛 ) ) /su 2s ) = ( ( 2s ·s 𝑡 ) /su ( ( 2s ↑s 𝑛 ) ·s 2s ) ) ) |
57 |
44 46 50 54
|
divsassd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) /su ( 2s ↑s 𝑛 ) ) = ( 2s ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ) |
58 |
57
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) /su ( 2s ↑s 𝑛 ) ) /su 2s ) = ( ( 2s ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) /su 2s ) ) |
59 |
43 56 58
|
3eqtr2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( 2s ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) /su 2s ) ) |
60 |
46 50 54
|
divscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ∈ No ) |
61 |
60 44 55
|
divscan3d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) /su 2s ) = ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) |
62 |
59 61
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) |
63 |
62
|
fveq2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ) |
64 |
63
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ) |
65 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑡 → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) = ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ) |
66 |
65
|
eleq1d |
⊢ ( 𝑧 = 𝑡 → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ) |
67 |
66
|
rspccva |
⊢ ( ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) |
68 |
67
|
adantll |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) |
69 |
64 68
|
eqeltrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) |
70 |
|
fvoveq1 |
⊢ ( 𝑤 = ( 2s ·s 𝑡 ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
71 |
70
|
eleq1d |
⊢ ( 𝑤 = ( 2s ·s 𝑡 ) → ( ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ↔ ( bday ‘ ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
72 |
69 71
|
syl5ibrcom |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑤 = ( 2s ·s 𝑡 ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
73 |
72
|
rexlimdva |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) → ( ∃ 𝑡 ∈ ℤs 𝑤 = ( 2s ·s 𝑡 ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
74 |
45
|
adantl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 𝑡 ∈ No ) |
75 |
|
no2times |
⊢ ( 𝑡 ∈ No → ( 2s ·s 𝑡 ) = ( 𝑡 +s 𝑡 ) ) |
76 |
74 75
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s 𝑡 ) = ( 𝑡 +s 𝑡 ) ) |
77 |
76
|
oveq1d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) +s 1s ) = ( ( 𝑡 +s 𝑡 ) +s 1s ) ) |
78 |
|
1sno |
⊢ 1s ∈ No |
79 |
78
|
a1i |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 1s ∈ No ) |
80 |
74 74 79
|
addsassd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 𝑡 +s 𝑡 ) +s 1s ) = ( 𝑡 +s ( 𝑡 +s 1s ) ) ) |
81 |
77 80
|
eqtrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) +s 1s ) = ( 𝑡 +s ( 𝑡 +s 1s ) ) ) |
82 |
81
|
oveq1d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( 𝑡 +s ( 𝑡 +s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
83 |
74 79
|
addscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑡 +s 1s ) ∈ No ) |
84 |
|
simpll |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 𝑛 ∈ ℕ0s ) |
85 |
74
|
sltp1d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 𝑡 <s ( 𝑡 +s 1s ) ) |
86 |
|
2nns |
⊢ 2s ∈ ℕs |
87 |
|
nnzs |
⊢ ( 2s ∈ ℕs → 2s ∈ ℤs ) |
88 |
86 87
|
mp1i |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 2s ∈ ℤs ) |
89 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 𝑡 ∈ ℤs ) |
90 |
88 89
|
zmulscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s 𝑡 ) ∈ ℤs ) |
91 |
90
|
znod |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s 𝑡 ) ∈ No ) |
92 |
|
pncans |
⊢ ( ( ( 2s ·s 𝑡 ) ∈ No ∧ 1s ∈ No ) → ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) = ( 2s ·s 𝑡 ) ) |
93 |
91 78 92
|
sylancl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) = ( 2s ·s 𝑡 ) ) |
94 |
93
|
eqcomd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s 𝑡 ) = ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) ) |
95 |
94
|
sneqd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → { ( 2s ·s 𝑡 ) } = { ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) } ) |
96 |
|
mulsrid |
⊢ ( 2s ∈ No → ( 2s ·s 1s ) = 2s ) |
97 |
5 96
|
ax-mp |
⊢ ( 2s ·s 1s ) = 2s |
98 |
|
1p1e2s |
⊢ ( 1s +s 1s ) = 2s |
99 |
97 98
|
eqtr4i |
⊢ ( 2s ·s 1s ) = ( 1s +s 1s ) |
100 |
99
|
oveq2i |
⊢ ( ( 2s ·s 𝑡 ) +s ( 2s ·s 1s ) ) = ( ( 2s ·s 𝑡 ) +s ( 1s +s 1s ) ) |
101 |
5
|
a1i |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 2s ∈ No ) |
102 |
101 74 79
|
addsdid |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s ( 𝑡 +s 1s ) ) = ( ( 2s ·s 𝑡 ) +s ( 2s ·s 1s ) ) ) |
103 |
91 79 79
|
addsassd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) = ( ( 2s ·s 𝑡 ) +s ( 1s +s 1s ) ) ) |
104 |
100 102 103
|
3eqtr4a |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s ( 𝑡 +s 1s ) ) = ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) ) |
105 |
104
|
sneqd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → { ( 2s ·s ( 𝑡 +s 1s ) ) } = { ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) } ) |
106 |
95 105
|
oveq12d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( { ( 2s ·s 𝑡 ) } |s { ( 2s ·s ( 𝑡 +s 1s ) ) } ) = ( { ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) } ) ) |
107 |
|
1zs |
⊢ 1s ∈ ℤs |
108 |
107
|
a1i |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 1s ∈ ℤs ) |
109 |
90 108
|
zaddscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) +s 1s ) ∈ ℤs ) |
110 |
|
zscut |
⊢ ( ( ( 2s ·s 𝑡 ) +s 1s ) ∈ ℤs → ( ( 2s ·s 𝑡 ) +s 1s ) = ( { ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) } ) ) |
111 |
109 110
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) +s 1s ) = ( { ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) } ) ) |
112 |
106 111 81
|
3eqtr2d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( { ( 2s ·s 𝑡 ) } |s { ( 2s ·s ( 𝑡 +s 1s ) ) } ) = ( 𝑡 +s ( 𝑡 +s 1s ) ) ) |
113 |
74 83 84 85 112
|
pw2cut |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) = ( ( 𝑡 +s ( 𝑡 +s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
114 |
82 113
|
eqtr4d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
115 |
114
|
fveq2d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
116 |
49
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ↑s 𝑛 ) ∈ No ) |
117 |
53
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ↑s 𝑛 ) ≠ 0s ) |
118 |
74 116 117
|
divscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ∈ No ) |
119 |
83 116 117
|
divscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ∈ No ) |
120 |
74 116 117
|
divscan2d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ↑s 𝑛 ) ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) = 𝑡 ) |
121 |
120 85
|
eqbrtrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ↑s 𝑛 ) ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) <s ( 𝑡 +s 1s ) ) |
122 |
|
nnsgt0 |
⊢ ( 2s ∈ ℕs → 0s <s 2s ) |
123 |
86 122
|
ax-mp |
⊢ 0s <s 2s |
124 |
|
expsgt0 |
⊢ ( ( 2s ∈ No ∧ 𝑛 ∈ ℕ0s ∧ 0s <s 2s ) → 0s <s ( 2s ↑s 𝑛 ) ) |
125 |
5 123 124
|
mp3an13 |
⊢ ( 𝑛 ∈ ℕ0s → 0s <s ( 2s ↑s 𝑛 ) ) |
126 |
125
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 0s <s ( 2s ↑s 𝑛 ) ) |
127 |
118 83 116 126
|
sltmuldiv2d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ↑s 𝑛 ) ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) <s ( 𝑡 +s 1s ) ↔ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) <s ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ) |
128 |
121 127
|
mpbid |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑡 /su ( 2s ↑s 𝑛 ) ) <s ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) |
129 |
118 119 128
|
ssltsn |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) |
130 |
|
imaundi |
⊢ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) = ( ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
131 |
130
|
unieqi |
⊢ ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) = ∪ ( ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
132 |
|
uniun |
⊢ ∪ ( ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) = ( ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
133 |
131 132
|
eqtri |
⊢ ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) = ( ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
134 |
|
bdayfn |
⊢ bday Fn No |
135 |
|
fnsnfv |
⊢ ( ( bday Fn No ∧ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ∈ No ) → { ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) } = ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ) |
136 |
134 118 135
|
sylancr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → { ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) } = ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ) |
137 |
136
|
unieqd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ { ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) } = ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ) |
138 |
|
fvex |
⊢ ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ∈ V |
139 |
138
|
unisn |
⊢ ∪ { ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) } = ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) |
140 |
137 139
|
eqtr3di |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) = ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ) |
141 |
140 68
|
eqeltrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∈ ω ) |
142 |
|
fnsnfv |
⊢ ( ( bday Fn No ∧ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ∈ No ) → { ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) } = ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
143 |
134 119 142
|
sylancr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → { ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) } = ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
144 |
143
|
unieqd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ { ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) } = ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
145 |
|
fvex |
⊢ ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ∈ V |
146 |
145
|
unisn |
⊢ ∪ { ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) } = ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) |
147 |
144 146
|
eqtr3di |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) = ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ) |
148 |
|
fvoveq1 |
⊢ ( 𝑧 = ( 𝑡 +s 1s ) → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) = ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ) |
149 |
148
|
eleq1d |
⊢ ( 𝑧 = ( 𝑡 +s 1s ) → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ↔ ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ) |
150 |
|
simplr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) |
151 |
89 108
|
zaddscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑡 +s 1s ) ∈ ℤs ) |
152 |
149 150 151
|
rspcdva |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) |
153 |
147 152
|
eqeltrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ∈ ω ) |
154 |
|
omun |
⊢ ( ( ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∈ ω ∧ ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ∈ ω ) → ( ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
155 |
141 153 154
|
syl2anc |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
156 |
133 155
|
eqeltrid |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
157 |
|
peano2 |
⊢ ( ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω → suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
158 |
156 157
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
159 |
|
nnon |
⊢ ( suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω → suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On ) |
160 |
158 159
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On ) |
161 |
|
imassrn |
⊢ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ ran bday |
162 |
|
bdayrn |
⊢ ran bday = On |
163 |
161 162
|
sseqtri |
⊢ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ On |
164 |
|
onsucuni |
⊢ ( ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ On → ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
165 |
163 164
|
mp1i |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
166 |
|
scutbdaybnd |
⊢ ( ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∧ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On ∧ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) → ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
167 |
129 160 165 166
|
syl3anc |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
168 |
|
bdayelon |
⊢ ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On |
169 |
|
onsssuc |
⊢ ( ( ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On ∧ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On ) → ( ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ↔ ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) ) |
170 |
168 160 169
|
sylancr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ↔ ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) ) |
171 |
167 170
|
mpbid |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
172 |
115 171
|
eqeltrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
173 |
|
peano2 |
⊢ ( suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω → suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
174 |
158 173
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
175 |
|
elnn |
⊢ ( ( ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∧ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) → ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) |
176 |
172 174 175
|
syl2anc |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) |
177 |
|
fvoveq1 |
⊢ ( 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
178 |
177
|
eleq1d |
⊢ ( 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) → ( ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ↔ ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
179 |
176 178
|
syl5ibrcom |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
180 |
179
|
rexlimdva |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) → ( ∃ 𝑡 ∈ ℤs 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
181 |
73 180
|
jaod |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) → ( ( ∃ 𝑡 ∈ ℤs 𝑤 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℤs 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
182 |
39 181
|
syl5 |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) → ( 𝑤 ∈ ℤs → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
183 |
182
|
ralrimiv |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) → ∀ 𝑤 ∈ ℤs ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) |
184 |
183
|
ex |
⊢ ( 𝑛 ∈ ℕ0s → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω → ∀ 𝑤 ∈ ℤs ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
185 |
12 17 26 31 38 184
|
n0sind |
⊢ ( 𝑦 ∈ ℕ0s → ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) |
186 |
185
|
adantl |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℕ0s ) → ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) |
187 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℕ0s ) → 𝑥 ∈ ℤs ) |
188 |
3 186 187
|
rspcdva |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℕ0s ) → ( bday ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) |
189 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ( bday ‘ 𝐴 ) = ( bday ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ) |
190 |
189
|
eleq1d |
⊢ ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ( ( bday ‘ 𝐴 ) ∈ ω ↔ ( bday ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) ) |
191 |
188 190
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℕ0s ) → ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ( bday ‘ 𝐴 ) ∈ ω ) ) |
192 |
191
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ( bday ‘ 𝐴 ) ∈ ω ) |
193 |
1 192
|
sylbi |
⊢ ( 𝐴 ∈ ℤs[1/2] → ( bday ‘ 𝐴 ) ∈ ω ) |