| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elzs12 |
⊢ ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) |
| 2 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑥 → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) = ( bday ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ) |
| 3 |
2
|
eleq1d |
⊢ ( 𝑧 = 𝑥 → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) ) |
| 4 |
|
oveq2 |
⊢ ( 𝑚 = 0s → ( 2s ↑s 𝑚 ) = ( 2s ↑s 0s ) ) |
| 5 |
|
2sno |
⊢ 2s ∈ No |
| 6 |
|
exps0 |
⊢ ( 2s ∈ No → ( 2s ↑s 0s ) = 1s ) |
| 7 |
5 6
|
ax-mp |
⊢ ( 2s ↑s 0s ) = 1s |
| 8 |
4 7
|
eqtrdi |
⊢ ( 𝑚 = 0s → ( 2s ↑s 𝑚 ) = 1s ) |
| 9 |
8
|
oveq2d |
⊢ ( 𝑚 = 0s → ( 𝑧 /su ( 2s ↑s 𝑚 ) ) = ( 𝑧 /su 1s ) ) |
| 10 |
9
|
fveq2d |
⊢ ( 𝑚 = 0s → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) = ( bday ‘ ( 𝑧 /su 1s ) ) ) |
| 11 |
10
|
eleq1d |
⊢ ( 𝑚 = 0s → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑧 /su 1s ) ) ∈ ω ) ) |
| 12 |
11
|
ralbidv |
⊢ ( 𝑚 = 0s → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su 1s ) ) ∈ ω ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 2s ↑s 𝑚 ) = ( 2s ↑s 𝑛 ) ) |
| 14 |
13
|
oveq2d |
⊢ ( 𝑚 = 𝑛 → ( 𝑧 /su ( 2s ↑s 𝑚 ) ) = ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝑚 = 𝑛 → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) = ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ) |
| 16 |
15
|
eleq1d |
⊢ ( 𝑚 = 𝑛 → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ) |
| 17 |
16
|
ralbidv |
⊢ ( 𝑚 = 𝑛 → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( 2s ↑s 𝑚 ) = ( 2s ↑s ( 𝑛 +s 1s ) ) ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( 𝑧 /su ( 2s ↑s 𝑚 ) ) = ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 20 |
19
|
fveq2d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) = ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 21 |
20
|
eleq1d |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 22 |
21
|
ralbidv |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 23 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑤 → ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 24 |
23
|
eleq1d |
⊢ ( 𝑧 = 𝑤 → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 25 |
24
|
cbvralvw |
⊢ ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ↔ ∀ 𝑤 ∈ ℤs ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) |
| 26 |
22 25
|
bitrdi |
⊢ ( 𝑚 = ( 𝑛 +s 1s ) → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ∀ 𝑤 ∈ ℤs ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑚 = 𝑦 → ( 2s ↑s 𝑚 ) = ( 2s ↑s 𝑦 ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑚 = 𝑦 → ( 𝑧 /su ( 2s ↑s 𝑚 ) ) = ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝑚 = 𝑦 → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) = ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ) |
| 30 |
29
|
eleq1d |
⊢ ( 𝑚 = 𝑦 → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) ) |
| 31 |
30
|
ralbidv |
⊢ ( 𝑚 = 𝑦 → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑚 ) ) ) ∈ ω ↔ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) ) |
| 32 |
|
zno |
⊢ ( 𝑧 ∈ ℤs → 𝑧 ∈ No ) |
| 33 |
|
divs1 |
⊢ ( 𝑧 ∈ No → ( 𝑧 /su 1s ) = 𝑧 ) |
| 34 |
32 33
|
syl |
⊢ ( 𝑧 ∈ ℤs → ( 𝑧 /su 1s ) = 𝑧 ) |
| 35 |
34
|
fveq2d |
⊢ ( 𝑧 ∈ ℤs → ( bday ‘ ( 𝑧 /su 1s ) ) = ( bday ‘ 𝑧 ) ) |
| 36 |
|
zsbday |
⊢ ( 𝑧 ∈ ℤs → ( bday ‘ 𝑧 ) ∈ ω ) |
| 37 |
35 36
|
eqeltrd |
⊢ ( 𝑧 ∈ ℤs → ( bday ‘ ( 𝑧 /su 1s ) ) ∈ ω ) |
| 38 |
37
|
rgen |
⊢ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su 1s ) ) ∈ ω |
| 39 |
|
zseo |
⊢ ( 𝑤 ∈ ℤs → ( ∃ 𝑡 ∈ ℤs 𝑤 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℤs 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
| 40 |
|
expsp1 |
⊢ ( ( 2s ∈ No ∧ 𝑛 ∈ ℕ0s ) → ( 2s ↑s ( 𝑛 +s 1s ) ) = ( ( 2s ↑s 𝑛 ) ·s 2s ) ) |
| 41 |
5 40
|
mpan |
⊢ ( 𝑛 ∈ ℕ0s → ( 2s ↑s ( 𝑛 +s 1s ) ) = ( ( 2s ↑s 𝑛 ) ·s 2s ) ) |
| 42 |
41
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( 2s ↑s ( 𝑛 +s 1s ) ) = ( ( 2s ↑s 𝑛 ) ·s 2s ) ) |
| 43 |
42
|
oveq2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( 2s ·s 𝑡 ) /su ( ( 2s ↑s 𝑛 ) ·s 2s ) ) ) |
| 44 |
5
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → 2s ∈ No ) |
| 45 |
|
zno |
⊢ ( 𝑡 ∈ ℤs → 𝑡 ∈ No ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → 𝑡 ∈ No ) |
| 47 |
44 46
|
mulscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( 2s ·s 𝑡 ) ∈ No ) |
| 48 |
|
expscl |
⊢ ( ( 2s ∈ No ∧ 𝑛 ∈ ℕ0s ) → ( 2s ↑s 𝑛 ) ∈ No ) |
| 49 |
5 48
|
mpan |
⊢ ( 𝑛 ∈ ℕ0s → ( 2s ↑s 𝑛 ) ∈ No ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( 2s ↑s 𝑛 ) ∈ No ) |
| 51 |
|
2ne0s |
⊢ 2s ≠ 0s |
| 52 |
|
expsne0 |
⊢ ( ( 2s ∈ No ∧ 2s ≠ 0s ∧ 𝑛 ∈ ℕ0s ) → ( 2s ↑s 𝑛 ) ≠ 0s ) |
| 53 |
5 51 52
|
mp3an12 |
⊢ ( 𝑛 ∈ ℕ0s → ( 2s ↑s 𝑛 ) ≠ 0s ) |
| 54 |
53
|
adantr |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( 2s ↑s 𝑛 ) ≠ 0s ) |
| 55 |
51
|
a1i |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → 2s ≠ 0s ) |
| 56 |
47 50 44 54 55
|
divdivs1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) /su ( 2s ↑s 𝑛 ) ) /su 2s ) = ( ( 2s ·s 𝑡 ) /su ( ( 2s ↑s 𝑛 ) ·s 2s ) ) ) |
| 57 |
44 46 50 54
|
divsassd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) /su ( 2s ↑s 𝑛 ) ) = ( 2s ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ) |
| 58 |
57
|
oveq1d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) /su ( 2s ↑s 𝑛 ) ) /su 2s ) = ( ( 2s ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) /su 2s ) ) |
| 59 |
43 56 58
|
3eqtr2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( 2s ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) /su 2s ) ) |
| 60 |
46 50 54
|
divscld |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ∈ No ) |
| 61 |
60 44 55
|
divscan3d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) /su 2s ) = ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) |
| 62 |
59 61
|
eqtrd |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) |
| 63 |
62
|
fveq2d |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ) |
| 64 |
63
|
adantlr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ) |
| 65 |
|
fvoveq1 |
⊢ ( 𝑧 = 𝑡 → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) = ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ) |
| 66 |
65
|
eleq1d |
⊢ ( 𝑧 = 𝑡 → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ↔ ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ) |
| 67 |
66
|
rspccva |
⊢ ( ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) |
| 68 |
67
|
adantll |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) |
| 69 |
64 68
|
eqeltrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) |
| 70 |
|
fvoveq1 |
⊢ ( 𝑤 = ( 2s ·s 𝑡 ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 71 |
70
|
eleq1d |
⊢ ( 𝑤 = ( 2s ·s 𝑡 ) → ( ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ↔ ( bday ‘ ( ( 2s ·s 𝑡 ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 72 |
69 71
|
syl5ibrcom |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑤 = ( 2s ·s 𝑡 ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 73 |
72
|
rexlimdva |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) → ( ∃ 𝑡 ∈ ℤs 𝑤 = ( 2s ·s 𝑡 ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 74 |
45
|
adantl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 𝑡 ∈ No ) |
| 75 |
|
no2times |
⊢ ( 𝑡 ∈ No → ( 2s ·s 𝑡 ) = ( 𝑡 +s 𝑡 ) ) |
| 76 |
74 75
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s 𝑡 ) = ( 𝑡 +s 𝑡 ) ) |
| 77 |
76
|
oveq1d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) +s 1s ) = ( ( 𝑡 +s 𝑡 ) +s 1s ) ) |
| 78 |
|
1sno |
⊢ 1s ∈ No |
| 79 |
78
|
a1i |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 1s ∈ No ) |
| 80 |
74 74 79
|
addsassd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 𝑡 +s 𝑡 ) +s 1s ) = ( 𝑡 +s ( 𝑡 +s 1s ) ) ) |
| 81 |
77 80
|
eqtrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) +s 1s ) = ( 𝑡 +s ( 𝑡 +s 1s ) ) ) |
| 82 |
81
|
oveq1d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( ( 𝑡 +s ( 𝑡 +s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 83 |
74 79
|
addscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑡 +s 1s ) ∈ No ) |
| 84 |
|
simpll |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 𝑛 ∈ ℕ0s ) |
| 85 |
74
|
sltp1d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 𝑡 <s ( 𝑡 +s 1s ) ) |
| 86 |
|
2nns |
⊢ 2s ∈ ℕs |
| 87 |
|
nnzs |
⊢ ( 2s ∈ ℕs → 2s ∈ ℤs ) |
| 88 |
86 87
|
mp1i |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 2s ∈ ℤs ) |
| 89 |
|
simpr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 𝑡 ∈ ℤs ) |
| 90 |
88 89
|
zmulscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s 𝑡 ) ∈ ℤs ) |
| 91 |
90
|
znod |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s 𝑡 ) ∈ No ) |
| 92 |
|
pncans |
⊢ ( ( ( 2s ·s 𝑡 ) ∈ No ∧ 1s ∈ No ) → ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) = ( 2s ·s 𝑡 ) ) |
| 93 |
91 78 92
|
sylancl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) = ( 2s ·s 𝑡 ) ) |
| 94 |
93
|
eqcomd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s 𝑡 ) = ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) ) |
| 95 |
94
|
sneqd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → { ( 2s ·s 𝑡 ) } = { ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) } ) |
| 96 |
|
mulsrid |
⊢ ( 2s ∈ No → ( 2s ·s 1s ) = 2s ) |
| 97 |
5 96
|
ax-mp |
⊢ ( 2s ·s 1s ) = 2s |
| 98 |
|
1p1e2s |
⊢ ( 1s +s 1s ) = 2s |
| 99 |
97 98
|
eqtr4i |
⊢ ( 2s ·s 1s ) = ( 1s +s 1s ) |
| 100 |
99
|
oveq2i |
⊢ ( ( 2s ·s 𝑡 ) +s ( 2s ·s 1s ) ) = ( ( 2s ·s 𝑡 ) +s ( 1s +s 1s ) ) |
| 101 |
5
|
a1i |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 2s ∈ No ) |
| 102 |
101 74 79
|
addsdid |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s ( 𝑡 +s 1s ) ) = ( ( 2s ·s 𝑡 ) +s ( 2s ·s 1s ) ) ) |
| 103 |
91 79 79
|
addsassd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) = ( ( 2s ·s 𝑡 ) +s ( 1s +s 1s ) ) ) |
| 104 |
100 102 103
|
3eqtr4a |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ·s ( 𝑡 +s 1s ) ) = ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) ) |
| 105 |
104
|
sneqd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → { ( 2s ·s ( 𝑡 +s 1s ) ) } = { ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) } ) |
| 106 |
95 105
|
oveq12d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( { ( 2s ·s 𝑡 ) } |s { ( 2s ·s ( 𝑡 +s 1s ) ) } ) = ( { ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) } ) ) |
| 107 |
|
1zs |
⊢ 1s ∈ ℤs |
| 108 |
107
|
a1i |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 1s ∈ ℤs ) |
| 109 |
90 108
|
zaddscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) +s 1s ) ∈ ℤs ) |
| 110 |
|
zscut |
⊢ ( ( ( 2s ·s 𝑡 ) +s 1s ) ∈ ℤs → ( ( 2s ·s 𝑡 ) +s 1s ) = ( { ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) } ) ) |
| 111 |
109 110
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ·s 𝑡 ) +s 1s ) = ( { ( ( ( 2s ·s 𝑡 ) +s 1s ) -s 1s ) } |s { ( ( ( 2s ·s 𝑡 ) +s 1s ) +s 1s ) } ) ) |
| 112 |
106 111 81
|
3eqtr2d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( { ( 2s ·s 𝑡 ) } |s { ( 2s ·s ( 𝑡 +s 1s ) ) } ) = ( 𝑡 +s ( 𝑡 +s 1s ) ) ) |
| 113 |
74 83 84 85 112
|
pw2cut |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) = ( ( 𝑡 +s ( 𝑡 +s 1s ) ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) |
| 114 |
82 113
|
eqtr4d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) = ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 115 |
114
|
fveq2d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
| 116 |
49
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ↑s 𝑛 ) ∈ No ) |
| 117 |
53
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 2s ↑s 𝑛 ) ≠ 0s ) |
| 118 |
74 116 117
|
divscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ∈ No ) |
| 119 |
83 116 117
|
divscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ∈ No ) |
| 120 |
74 116 117
|
divscan2d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ↑s 𝑛 ) ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) = 𝑡 ) |
| 121 |
120 85
|
eqbrtrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( 2s ↑s 𝑛 ) ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) <s ( 𝑡 +s 1s ) ) |
| 122 |
|
nnsgt0 |
⊢ ( 2s ∈ ℕs → 0s <s 2s ) |
| 123 |
86 122
|
ax-mp |
⊢ 0s <s 2s |
| 124 |
|
expsgt0 |
⊢ ( ( 2s ∈ No ∧ 𝑛 ∈ ℕ0s ∧ 0s <s 2s ) → 0s <s ( 2s ↑s 𝑛 ) ) |
| 125 |
5 123 124
|
mp3an13 |
⊢ ( 𝑛 ∈ ℕ0s → 0s <s ( 2s ↑s 𝑛 ) ) |
| 126 |
125
|
ad2antrr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → 0s <s ( 2s ↑s 𝑛 ) ) |
| 127 |
118 83 116 126
|
sltmuldiv2d |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( ( 2s ↑s 𝑛 ) ·s ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) <s ( 𝑡 +s 1s ) ↔ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) <s ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ) |
| 128 |
121 127
|
mpbid |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑡 /su ( 2s ↑s 𝑛 ) ) <s ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) |
| 129 |
118 119 128
|
ssltsn |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) |
| 130 |
|
imaundi |
⊢ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) = ( ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 131 |
130
|
unieqi |
⊢ ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) = ∪ ( ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 132 |
|
uniun |
⊢ ∪ ( ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) = ( ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 133 |
131 132
|
eqtri |
⊢ ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) = ( ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 134 |
|
bdayfn |
⊢ bday Fn No |
| 135 |
|
fnsnfv |
⊢ ( ( bday Fn No ∧ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ∈ No ) → { ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) } = ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 136 |
134 118 135
|
sylancr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → { ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) } = ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 137 |
136
|
unieqd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ { ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) } = ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 138 |
|
fvex |
⊢ ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ∈ V |
| 139 |
138
|
unisn |
⊢ ∪ { ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) } = ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) |
| 140 |
137 139
|
eqtr3di |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) = ( bday ‘ ( 𝑡 /su ( 2s ↑s 𝑛 ) ) ) ) |
| 141 |
140 68
|
eqeltrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∈ ω ) |
| 142 |
|
fnsnfv |
⊢ ( ( bday Fn No ∧ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ∈ No ) → { ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) } = ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 143 |
134 119 142
|
sylancr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → { ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) } = ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 144 |
143
|
unieqd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ { ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) } = ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) |
| 145 |
|
fvex |
⊢ ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ∈ V |
| 146 |
145
|
unisn |
⊢ ∪ { ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) } = ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) |
| 147 |
144 146
|
eqtr3di |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) = ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ) |
| 148 |
|
fvoveq1 |
⊢ ( 𝑧 = ( 𝑡 +s 1s ) → ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) = ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ) |
| 149 |
148
|
eleq1d |
⊢ ( 𝑧 = ( 𝑡 +s 1s ) → ( ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ↔ ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ) |
| 150 |
|
simplr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) |
| 151 |
89 108
|
zaddscld |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑡 +s 1s ) ∈ ℤs ) |
| 152 |
149 150 151
|
rspcdva |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) |
| 153 |
147 152
|
eqeltrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ∈ ω ) |
| 154 |
|
omun |
⊢ ( ( ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∈ ω ∧ ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ∈ ω ) → ( ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
| 155 |
141 153 154
|
syl2anc |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ∪ ( bday “ { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ) ∪ ∪ ( bday “ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
| 156 |
133 155
|
eqeltrid |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
| 157 |
|
peano2 |
⊢ ( ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω → suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
| 158 |
156 157
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
| 159 |
|
nnon |
⊢ ( suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω → suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On ) |
| 160 |
158 159
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On ) |
| 161 |
|
imassrn |
⊢ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ ran bday |
| 162 |
|
bdayrn |
⊢ ran bday = On |
| 163 |
161 162
|
sseqtri |
⊢ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ On |
| 164 |
|
onsucuni |
⊢ ( ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ On → ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
| 165 |
163 164
|
mp1i |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
| 166 |
|
scutbdaybnd |
⊢ ( ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } <<s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ∧ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On ∧ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) → ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
| 167 |
129 160 165 166
|
syl3anc |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
| 168 |
|
bdayelon |
⊢ ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On |
| 169 |
|
onsssuc |
⊢ ( ( ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On ∧ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ On ) → ( ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ↔ ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) ) |
| 170 |
168 160 169
|
sylancr |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ⊆ suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ↔ ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) ) |
| 171 |
167 170
|
mpbid |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } |s { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
| 172 |
115 171
|
eqeltrd |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ) |
| 173 |
|
peano2 |
⊢ ( suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω → suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
| 174 |
158 173
|
syl |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) |
| 175 |
|
elnn |
⊢ ( ( ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∧ suc suc ∪ ( bday “ ( { ( 𝑡 /su ( 2s ↑s 𝑛 ) ) } ∪ { ( ( 𝑡 +s 1s ) /su ( 2s ↑s 𝑛 ) ) } ) ) ∈ ω ) → ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) |
| 176 |
172 174 175
|
syl2anc |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) |
| 177 |
|
fvoveq1 |
⊢ ( 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) = ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ) |
| 178 |
177
|
eleq1d |
⊢ ( 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) → ( ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ↔ ( bday ‘ ( ( ( 2s ·s 𝑡 ) +s 1s ) /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 179 |
176 178
|
syl5ibrcom |
⊢ ( ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) ∧ 𝑡 ∈ ℤs ) → ( 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 180 |
179
|
rexlimdva |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) → ( ∃ 𝑡 ∈ ℤs 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 181 |
73 180
|
jaod |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) → ( ( ∃ 𝑡 ∈ ℤs 𝑤 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℤs 𝑤 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 182 |
39 181
|
syl5 |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) → ( 𝑤 ∈ ℤs → ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 183 |
182
|
ralrimiv |
⊢ ( ( 𝑛 ∈ ℕ0s ∧ ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω ) → ∀ 𝑤 ∈ ℤs ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) |
| 184 |
183
|
ex |
⊢ ( 𝑛 ∈ ℕ0s → ( ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑛 ) ) ) ∈ ω → ∀ 𝑤 ∈ ℤs ( bday ‘ ( 𝑤 /su ( 2s ↑s ( 𝑛 +s 1s ) ) ) ) ∈ ω ) ) |
| 185 |
12 17 26 31 38 184
|
n0sind |
⊢ ( 𝑦 ∈ ℕ0s → ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) |
| 186 |
185
|
adantl |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℕ0s ) → ∀ 𝑧 ∈ ℤs ( bday ‘ ( 𝑧 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) |
| 187 |
|
simpl |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℕ0s ) → 𝑥 ∈ ℤs ) |
| 188 |
3 186 187
|
rspcdva |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℕ0s ) → ( bday ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) |
| 189 |
|
fveq2 |
⊢ ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ( bday ‘ 𝐴 ) = ( bday ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ) |
| 190 |
189
|
eleq1d |
⊢ ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ( ( bday ‘ 𝐴 ) ∈ ω ↔ ( bday ‘ ( 𝑥 /su ( 2s ↑s 𝑦 ) ) ) ∈ ω ) ) |
| 191 |
188 190
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℤs ∧ 𝑦 ∈ ℕ0s ) → ( 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ( bday ‘ 𝐴 ) ∈ ω ) ) |
| 192 |
191
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℤs ∃ 𝑦 ∈ ℕ0s 𝐴 = ( 𝑥 /su ( 2s ↑s 𝑦 ) ) → ( bday ‘ 𝐴 ) ∈ ω ) |
| 193 |
1 192
|
sylbi |
⊢ ( 𝐴 ∈ ℤs[1/2] → ( bday ‘ 𝐴 ) ∈ ω ) |