Step |
Hyp |
Ref |
Expression |
1 |
|
elzs |
⊢ ( 𝑁 ∈ ℤs ↔ ∃ 𝑦 ∈ ℕs ∃ 𝑧 ∈ ℕs 𝑁 = ( 𝑦 -s 𝑧 ) ) |
2 |
|
nnn0s |
⊢ ( 𝑦 ∈ ℕs → 𝑦 ∈ ℕ0s ) |
3 |
|
n0seo |
⊢ ( 𝑦 ∈ ℕ0s → ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∨ ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ) ) |
4 |
2 3
|
syl |
⊢ ( 𝑦 ∈ ℕs → ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∨ ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ) ) |
5 |
|
nnn0s |
⊢ ( 𝑧 ∈ ℕs → 𝑧 ∈ ℕ0s ) |
6 |
|
n0seo |
⊢ ( 𝑧 ∈ ℕ0s → ( ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
7 |
5 6
|
syl |
⊢ ( 𝑧 ∈ ℕs → ( ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
8 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) ) |
9 |
|
n0zs |
⊢ ( 𝑤 ∈ ℕ0s → 𝑤 ∈ ℤs ) |
10 |
9
|
adantr |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 𝑤 ∈ ℤs ) |
11 |
|
n0zs |
⊢ ( 𝑡 ∈ ℕ0s → 𝑡 ∈ ℤs ) |
12 |
11
|
adantl |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 𝑡 ∈ ℤs ) |
13 |
10 12
|
zsubscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 𝑤 -s 𝑡 ) ∈ ℤs ) |
14 |
|
2sno |
⊢ 2s ∈ No |
15 |
14
|
a1i |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 2s ∈ No ) |
16 |
|
n0sno |
⊢ ( 𝑤 ∈ ℕ0s → 𝑤 ∈ No ) |
17 |
16
|
adantr |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 𝑤 ∈ No ) |
18 |
|
n0sno |
⊢ ( 𝑡 ∈ ℕ0s → 𝑡 ∈ No ) |
19 |
18
|
adantl |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 𝑡 ∈ No ) |
20 |
15 17 19
|
subsdid |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 2s ·s ( 𝑤 -s 𝑡 ) ) = ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) ) |
21 |
20
|
eqcomd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) |
22 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑤 -s 𝑡 ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) |
23 |
22
|
rspceeqv |
⊢ ( ( ( 𝑤 -s 𝑡 ) ∈ ℤs ∧ ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) ) |
24 |
13 21 23
|
syl2anc |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) ) |
25 |
|
oveq12 |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) ) |
26 |
25
|
eqeq1d |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) ) ) |
27 |
26
|
rexbidv |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) ) ) |
28 |
24 27
|
syl5ibrcom |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) ) |
29 |
28
|
rexlimivv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) |
30 |
8 29
|
sylbir |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) |
31 |
30
|
orcd |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
32 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) ) |
33 |
15 17
|
mulscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 2s ·s 𝑤 ) ∈ No ) |
34 |
|
1sno |
⊢ 1s ∈ No |
35 |
34
|
a1i |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 1s ∈ No ) |
36 |
15 19
|
mulscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 2s ·s 𝑡 ) ∈ No ) |
37 |
33 35 36
|
addsubsd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 1s ) ) |
38 |
21
|
oveq1d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) ) |
39 |
37 38
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) ) |
40 |
22
|
oveq1d |
⊢ ( 𝑥 = ( 𝑤 -s 𝑡 ) → ( ( 2s ·s 𝑥 ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) ) |
41 |
40
|
rspceeqv |
⊢ ( ( ( 𝑤 -s 𝑡 ) ∈ ℤs ∧ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
42 |
13 39 41
|
syl2anc |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
43 |
|
oveq12 |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( 𝑦 -s 𝑧 ) = ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) ) |
44 |
43
|
eqeq1d |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
45 |
44
|
rexbidv |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
46 |
42 45
|
syl5ibrcom |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
47 |
46
|
rexlimivv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
48 |
32 47
|
sylbir |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
49 |
48
|
olcd |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
50 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
51 |
|
1zs |
⊢ 1s ∈ ℤs |
52 |
51
|
a1i |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 1s ∈ ℤs ) |
53 |
13 52
|
zsubscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 𝑤 -s 𝑡 ) -s 1s ) ∈ ℤs ) |
54 |
13
|
znod |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 𝑤 -s 𝑡 ) ∈ No ) |
55 |
15 54 35
|
subsdid |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) ) |
56 |
55
|
oveq1d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) = ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) +s 1s ) ) |
57 |
|
mulsrid |
⊢ ( 2s ∈ No → ( 2s ·s 1s ) = 2s ) |
58 |
14 57
|
ax-mp |
⊢ ( 2s ·s 1s ) = 2s |
59 |
58
|
oveq2i |
⊢ ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s ) |
60 |
59
|
oveq1i |
⊢ ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) +s 1s ) = ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s ) +s 1s ) |
61 |
15 54
|
mulscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 2s ·s ( 𝑤 -s 𝑡 ) ) ∈ No ) |
62 |
61 35 15
|
addsubsd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) -s 2s ) = ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s ) +s 1s ) ) |
63 |
61 35 15
|
addsubsassd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) -s 2s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) ) |
64 |
62 63
|
eqtr3d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) ) |
65 |
60 64
|
eqtrid |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) ) |
66 |
56 65
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) ) |
67 |
|
subscl |
⊢ ( ( 1s ∈ No ∧ 2s ∈ No ) → ( 1s -s 2s ) ∈ No ) |
68 |
34 14 67
|
mp2an |
⊢ ( 1s -s 2s ) ∈ No |
69 |
|
negnegs |
⊢ ( ( 1s -s 2s ) ∈ No → ( -us ‘ ( -us ‘ ( 1s -s 2s ) ) ) = ( 1s -s 2s ) ) |
70 |
68 69
|
ax-mp |
⊢ ( -us ‘ ( -us ‘ ( 1s -s 2s ) ) ) = ( 1s -s 2s ) |
71 |
34
|
a1i |
⊢ ( ⊤ → 1s ∈ No ) |
72 |
14
|
a1i |
⊢ ( ⊤ → 2s ∈ No ) |
73 |
71 72
|
negsubsdi2d |
⊢ ( ⊤ → ( -us ‘ ( 1s -s 2s ) ) = ( 2s -s 1s ) ) |
74 |
73
|
mptru |
⊢ ( -us ‘ ( 1s -s 2s ) ) = ( 2s -s 1s ) |
75 |
|
1p1e2s |
⊢ ( 1s +s 1s ) = 2s |
76 |
|
subadds |
⊢ ( ( 2s ∈ No ∧ 1s ∈ No ∧ 1s ∈ No ) → ( ( 2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s ) ) |
77 |
14 34 34 76
|
mp3an |
⊢ ( ( 2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s ) |
78 |
75 77
|
mpbir |
⊢ ( 2s -s 1s ) = 1s |
79 |
74 78
|
eqtri |
⊢ ( -us ‘ ( 1s -s 2s ) ) = 1s |
80 |
79
|
fveq2i |
⊢ ( -us ‘ ( -us ‘ ( 1s -s 2s ) ) ) = ( -us ‘ 1s ) |
81 |
70 80
|
eqtr3i |
⊢ ( 1s -s 2s ) = ( -us ‘ 1s ) |
82 |
81
|
oveq2i |
⊢ ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( -us ‘ 1s ) ) |
83 |
61 35
|
subsvald |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( -us ‘ 1s ) ) ) |
84 |
82 83
|
eqtr4id |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 1s ) ) |
85 |
20
|
oveq1d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 1s ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) -s 1s ) ) |
86 |
84 85
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) -s 1s ) ) |
87 |
33 36 35
|
subsubs4d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) -s 1s ) = ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
88 |
66 86 87
|
3eqtrrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) ) |
89 |
|
oveq2 |
⊢ ( 𝑥 = ( ( 𝑤 -s 𝑡 ) -s 1s ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) ) |
90 |
89
|
oveq1d |
⊢ ( 𝑥 = ( ( 𝑤 -s 𝑡 ) -s 1s ) → ( ( 2s ·s 𝑥 ) +s 1s ) = ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) ) |
91 |
90
|
rspceeqv |
⊢ ( ( ( ( 𝑤 -s 𝑡 ) -s 1s ) ∈ ℤs ∧ ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
92 |
53 88 91
|
syl2anc |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
93 |
|
oveq12 |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
94 |
93
|
eqeq1d |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
95 |
94
|
rexbidv |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
96 |
92 95
|
syl5ibrcom |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
97 |
96
|
rexlimivv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
98 |
50 97
|
sylbir |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
99 |
98
|
olcd |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
100 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
101 |
33 35 36 35
|
addsubs4d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s ( 1s -s 1s ) ) ) |
102 |
|
subsid |
⊢ ( 1s ∈ No → ( 1s -s 1s ) = 0s ) |
103 |
34 102
|
ax-mp |
⊢ ( 1s -s 1s ) = 0s |
104 |
103
|
oveq2i |
⊢ ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s ( 1s -s 1s ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 0s ) |
105 |
33 36
|
subscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) ∈ No ) |
106 |
105
|
addsridd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 0s ) = ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) ) |
107 |
106 21
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 0s ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) |
108 |
104 107
|
eqtrid |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s ( 1s -s 1s ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) |
109 |
101 108
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) |
110 |
22
|
rspceeqv |
⊢ ( ( ( 𝑤 -s 𝑡 ) ∈ ℤs ∧ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) ) |
111 |
13 109 110
|
syl2anc |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) ) |
112 |
|
oveq12 |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( 𝑦 -s 𝑧 ) = ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
113 |
112
|
eqeq1d |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) ) ) |
114 |
113
|
rexbidv |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) ) ) |
115 |
111 114
|
syl5ibrcom |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) ) |
116 |
115
|
rexlimivv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) |
117 |
100 116
|
sylbir |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) |
118 |
117
|
orcd |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
119 |
31 49 99 118
|
ccase |
⊢ ( ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∨ ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ) ∧ ( ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
120 |
4 7 119
|
syl2an |
⊢ ( ( 𝑦 ∈ ℕs ∧ 𝑧 ∈ ℕs ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
121 |
|
eqeq1 |
⊢ ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( 𝑁 = ( 2s ·s 𝑥 ) ↔ ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) ) |
122 |
121
|
rexbidv |
⊢ ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ↔ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) ) |
123 |
|
eqeq1 |
⊢ ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
124 |
123
|
rexbidv |
⊢ ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
125 |
122 124
|
orbi12d |
⊢ ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) ↔ ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) ) |
126 |
120 125
|
syl5ibrcom |
⊢ ( ( 𝑦 ∈ ℕs ∧ 𝑧 ∈ ℕs ) → ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) ) |
127 |
126
|
rexlimivv |
⊢ ( ∃ 𝑦 ∈ ℕs ∃ 𝑧 ∈ ℕs 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
128 |
1 127
|
sylbi |
⊢ ( 𝑁 ∈ ℤs → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |