| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elzs |
⊢ ( 𝑁 ∈ ℤs ↔ ∃ 𝑦 ∈ ℕs ∃ 𝑧 ∈ ℕs 𝑁 = ( 𝑦 -s 𝑧 ) ) |
| 2 |
|
nnn0s |
⊢ ( 𝑦 ∈ ℕs → 𝑦 ∈ ℕ0s ) |
| 3 |
|
n0seo |
⊢ ( 𝑦 ∈ ℕ0s → ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∨ ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝑦 ∈ ℕs → ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∨ ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ) ) |
| 5 |
|
nnn0s |
⊢ ( 𝑧 ∈ ℕs → 𝑧 ∈ ℕ0s ) |
| 6 |
|
n0seo |
⊢ ( 𝑧 ∈ ℕ0s → ( ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝑧 ∈ ℕs → ( ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
| 8 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) ) |
| 9 |
|
n0zs |
⊢ ( 𝑤 ∈ ℕ0s → 𝑤 ∈ ℤs ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 𝑤 ∈ ℤs ) |
| 11 |
|
n0zs |
⊢ ( 𝑡 ∈ ℕ0s → 𝑡 ∈ ℤs ) |
| 12 |
11
|
adantl |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 𝑡 ∈ ℤs ) |
| 13 |
10 12
|
zsubscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 𝑤 -s 𝑡 ) ∈ ℤs ) |
| 14 |
|
2sno |
⊢ 2s ∈ No |
| 15 |
14
|
a1i |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 2s ∈ No ) |
| 16 |
|
n0sno |
⊢ ( 𝑤 ∈ ℕ0s → 𝑤 ∈ No ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 𝑤 ∈ No ) |
| 18 |
|
n0sno |
⊢ ( 𝑡 ∈ ℕ0s → 𝑡 ∈ No ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 𝑡 ∈ No ) |
| 20 |
15 17 19
|
subsdid |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 2s ·s ( 𝑤 -s 𝑡 ) ) = ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) ) |
| 21 |
20
|
eqcomd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) |
| 22 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑤 -s 𝑡 ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) |
| 23 |
22
|
rspceeqv |
⊢ ( ( ( 𝑤 -s 𝑡 ) ∈ ℤs ∧ ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) ) |
| 24 |
13 21 23
|
syl2anc |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) ) |
| 25 |
|
oveq12 |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) ) |
| 26 |
25
|
eqeq1d |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) ) ) |
| 27 |
26
|
rexbidv |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) ) ) |
| 28 |
24 27
|
syl5ibrcom |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) ) |
| 29 |
28
|
rexlimivv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) |
| 30 |
8 29
|
sylbir |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) |
| 31 |
30
|
orcd |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 32 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) ) |
| 33 |
15 17
|
mulscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 2s ·s 𝑤 ) ∈ No ) |
| 34 |
|
1sno |
⊢ 1s ∈ No |
| 35 |
34
|
a1i |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 1s ∈ No ) |
| 36 |
15 19
|
mulscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 2s ·s 𝑡 ) ∈ No ) |
| 37 |
33 35 36
|
addsubsd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 1s ) ) |
| 38 |
21
|
oveq1d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) ) |
| 39 |
37 38
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) ) |
| 40 |
22
|
oveq1d |
⊢ ( 𝑥 = ( 𝑤 -s 𝑡 ) → ( ( 2s ·s 𝑥 ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) ) |
| 41 |
40
|
rspceeqv |
⊢ ( ( ( 𝑤 -s 𝑡 ) ∈ ℤs ∧ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
| 42 |
13 39 41
|
syl2anc |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
| 43 |
|
oveq12 |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( 𝑦 -s 𝑧 ) = ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) ) |
| 44 |
43
|
eqeq1d |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 45 |
44
|
rexbidv |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 46 |
42 45
|
syl5ibrcom |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 47 |
46
|
rexlimivv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
| 48 |
32 47
|
sylbir |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
| 49 |
48
|
olcd |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 50 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
| 51 |
|
1zs |
⊢ 1s ∈ ℤs |
| 52 |
51
|
a1i |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → 1s ∈ ℤs ) |
| 53 |
13 52
|
zsubscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 𝑤 -s 𝑡 ) -s 1s ) ∈ ℤs ) |
| 54 |
13
|
znod |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 𝑤 -s 𝑡 ) ∈ No ) |
| 55 |
15 54 35
|
subsdid |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) ) |
| 56 |
55
|
oveq1d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) = ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) +s 1s ) ) |
| 57 |
|
mulsrid |
⊢ ( 2s ∈ No → ( 2s ·s 1s ) = 2s ) |
| 58 |
14 57
|
ax-mp |
⊢ ( 2s ·s 1s ) = 2s |
| 59 |
58
|
oveq2i |
⊢ ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s ) |
| 60 |
59
|
oveq1i |
⊢ ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) +s 1s ) = ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s ) +s 1s ) |
| 61 |
15 54
|
mulscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( 2s ·s ( 𝑤 -s 𝑡 ) ) ∈ No ) |
| 62 |
61 35 15
|
addsubsd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) -s 2s ) = ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s ) +s 1s ) ) |
| 63 |
61 35 15
|
addsubsassd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) -s 2s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) ) |
| 64 |
62 63
|
eqtr3d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) ) |
| 65 |
60 64
|
eqtrid |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) ) |
| 66 |
56 65
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) ) |
| 67 |
|
subscl |
⊢ ( ( 1s ∈ No ∧ 2s ∈ No ) → ( 1s -s 2s ) ∈ No ) |
| 68 |
34 14 67
|
mp2an |
⊢ ( 1s -s 2s ) ∈ No |
| 69 |
|
negnegs |
⊢ ( ( 1s -s 2s ) ∈ No → ( -us ‘ ( -us ‘ ( 1s -s 2s ) ) ) = ( 1s -s 2s ) ) |
| 70 |
68 69
|
ax-mp |
⊢ ( -us ‘ ( -us ‘ ( 1s -s 2s ) ) ) = ( 1s -s 2s ) |
| 71 |
34
|
a1i |
⊢ ( ⊤ → 1s ∈ No ) |
| 72 |
14
|
a1i |
⊢ ( ⊤ → 2s ∈ No ) |
| 73 |
71 72
|
negsubsdi2d |
⊢ ( ⊤ → ( -us ‘ ( 1s -s 2s ) ) = ( 2s -s 1s ) ) |
| 74 |
73
|
mptru |
⊢ ( -us ‘ ( 1s -s 2s ) ) = ( 2s -s 1s ) |
| 75 |
|
1p1e2s |
⊢ ( 1s +s 1s ) = 2s |
| 76 |
|
subadds |
⊢ ( ( 2s ∈ No ∧ 1s ∈ No ∧ 1s ∈ No ) → ( ( 2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s ) ) |
| 77 |
14 34 34 76
|
mp3an |
⊢ ( ( 2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s ) |
| 78 |
75 77
|
mpbir |
⊢ ( 2s -s 1s ) = 1s |
| 79 |
74 78
|
eqtri |
⊢ ( -us ‘ ( 1s -s 2s ) ) = 1s |
| 80 |
79
|
fveq2i |
⊢ ( -us ‘ ( -us ‘ ( 1s -s 2s ) ) ) = ( -us ‘ 1s ) |
| 81 |
70 80
|
eqtr3i |
⊢ ( 1s -s 2s ) = ( -us ‘ 1s ) |
| 82 |
81
|
oveq2i |
⊢ ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( -us ‘ 1s ) ) |
| 83 |
61 35
|
subsvald |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( -us ‘ 1s ) ) ) |
| 84 |
82 83
|
eqtr4id |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 1s ) ) |
| 85 |
20
|
oveq1d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 1s ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) -s 1s ) ) |
| 86 |
84 85
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) -s 1s ) ) |
| 87 |
33 36 35
|
subsubs4d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) -s 1s ) = ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
| 88 |
66 86 87
|
3eqtrrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) ) |
| 89 |
|
oveq2 |
⊢ ( 𝑥 = ( ( 𝑤 -s 𝑡 ) -s 1s ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) ) |
| 90 |
89
|
oveq1d |
⊢ ( 𝑥 = ( ( 𝑤 -s 𝑡 ) -s 1s ) → ( ( 2s ·s 𝑥 ) +s 1s ) = ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) ) |
| 91 |
90
|
rspceeqv |
⊢ ( ( ( ( 𝑤 -s 𝑡 ) -s 1s ) ∈ ℤs ∧ ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
| 92 |
53 88 91
|
syl2anc |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
| 93 |
|
oveq12 |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
| 94 |
93
|
eqeq1d |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 95 |
94
|
rexbidv |
⊢ ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 96 |
92 95
|
syl5ibrcom |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 97 |
96
|
rexlimivv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
| 98 |
50 97
|
sylbir |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) |
| 99 |
98
|
olcd |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 100 |
|
reeanv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
| 101 |
33 35 36 35
|
addsubs4d |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s ( 1s -s 1s ) ) ) |
| 102 |
|
subsid |
⊢ ( 1s ∈ No → ( 1s -s 1s ) = 0s ) |
| 103 |
34 102
|
ax-mp |
⊢ ( 1s -s 1s ) = 0s |
| 104 |
103
|
oveq2i |
⊢ ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s ( 1s -s 1s ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 0s ) |
| 105 |
33 36
|
subscld |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) ∈ No ) |
| 106 |
105
|
addsridd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 0s ) = ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) ) |
| 107 |
106 21
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 0s ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) |
| 108 |
104 107
|
eqtrid |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s ( 1s -s 1s ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) |
| 109 |
101 108
|
eqtrd |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) |
| 110 |
22
|
rspceeqv |
⊢ ( ( ( 𝑤 -s 𝑡 ) ∈ ℤs ∧ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) ) |
| 111 |
13 109 110
|
syl2anc |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) ) |
| 112 |
|
oveq12 |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( 𝑦 -s 𝑧 ) = ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) ) |
| 113 |
112
|
eqeq1d |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) ) ) |
| 114 |
113
|
rexbidv |
⊢ ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) ) ) |
| 115 |
111 114
|
syl5ibrcom |
⊢ ( ( 𝑤 ∈ ℕ0s ∧ 𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) ) |
| 116 |
115
|
rexlimivv |
⊢ ( ∃ 𝑤 ∈ ℕ0s ∃ 𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) |
| 117 |
100 116
|
sylbir |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) |
| 118 |
117
|
orcd |
⊢ ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 119 |
31 49 99 118
|
ccase |
⊢ ( ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∨ ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ) ∧ ( ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 120 |
4 7 119
|
syl2an |
⊢ ( ( 𝑦 ∈ ℕs ∧ 𝑧 ∈ ℕs ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 121 |
|
eqeq1 |
⊢ ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( 𝑁 = ( 2s ·s 𝑥 ) ↔ ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) ) |
| 122 |
121
|
rexbidv |
⊢ ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ↔ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) ) |
| 123 |
|
eqeq1 |
⊢ ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 124 |
123
|
rexbidv |
⊢ ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 125 |
122 124
|
orbi12d |
⊢ ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) ↔ ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) ) |
| 126 |
120 125
|
syl5ibrcom |
⊢ ( ( 𝑦 ∈ ℕs ∧ 𝑧 ∈ ℕs ) → ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) ) |
| 127 |
126
|
rexlimivv |
⊢ ( ∃ 𝑦 ∈ ℕs ∃ 𝑧 ∈ ℕs 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |
| 128 |
1 127
|
sylbi |
⊢ ( 𝑁 ∈ ℤs → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) |