Metamath Proof Explorer


Theorem zseo

Description: A surreal integer is either even or odd. (Contributed by Scott Fenton, 19-Aug-2025)

Ref Expression
Assertion zseo ( 𝑁 ∈ ℤs → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) )

Proof

Step Hyp Ref Expression
1 elzs ( 𝑁 ∈ ℤs ↔ ∃ 𝑦 ∈ ℕs𝑧 ∈ ℕs 𝑁 = ( 𝑦 -s 𝑧 ) )
2 nnn0s ( 𝑦 ∈ ℕs𝑦 ∈ ℕ0s )
3 n0seo ( 𝑦 ∈ ℕ0s → ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∨ ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ) )
4 2 3 syl ( 𝑦 ∈ ℕs → ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∨ ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ) )
5 nnn0s ( 𝑧 ∈ ℕs𝑧 ∈ ℕ0s )
6 n0seo ( 𝑧 ∈ ℕ0s → ( ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) )
7 5 6 syl ( 𝑧 ∈ ℕs → ( ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) )
8 reeanv ( ∃ 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) )
9 n0zs ( 𝑤 ∈ ℕ0s𝑤 ∈ ℤs )
10 9 adantr ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → 𝑤 ∈ ℤs )
11 n0zs ( 𝑡 ∈ ℕ0s𝑡 ∈ ℤs )
12 11 adantl ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → 𝑡 ∈ ℤs )
13 10 12 zsubscld ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( 𝑤 -s 𝑡 ) ∈ ℤs )
14 2sno 2s No
15 14 a1i ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → 2s No )
16 n0sno ( 𝑤 ∈ ℕ0s𝑤 No )
17 16 adantr ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → 𝑤 No )
18 n0sno ( 𝑡 ∈ ℕ0s𝑡 No )
19 18 adantl ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → 𝑡 No )
20 15 17 19 subsdid ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( 2s ·s ( 𝑤 -s 𝑡 ) ) = ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) )
21 20 eqcomd ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) )
22 oveq2 ( 𝑥 = ( 𝑤 -s 𝑡 ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) )
23 22 rspceeqv ( ( ( 𝑤 -s 𝑡 ) ∈ ℤs ∧ ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) )
24 13 21 23 syl2anc ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) )
25 oveq12 ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) )
26 25 eqeq1d ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) ) )
27 26 rexbidv ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) = ( 2s ·s 𝑥 ) ) )
28 24 27 syl5ibrcom ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) )
29 28 rexlimivv ( ∃ 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) )
30 8 29 sylbir ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) )
31 30 orcd ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
32 reeanv ( ∃ 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) )
33 15 17 mulscld ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( 2s ·s 𝑤 ) ∈ No )
34 1sno 1s No
35 34 a1i ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → 1s No )
36 15 19 mulscld ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( 2s ·s 𝑡 ) ∈ No )
37 33 35 36 addsubsd ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 1s ) )
38 21 oveq1d ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) )
39 37 38 eqtrd ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) )
40 22 oveq1d ( 𝑥 = ( 𝑤 -s 𝑡 ) → ( ( 2s ·s 𝑥 ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) )
41 40 rspceeqv ( ( ( 𝑤 -s 𝑡 ) ∈ ℤs ∧ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) )
42 13 39 41 syl2anc ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) )
43 oveq12 ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( 𝑦 -s 𝑧 ) = ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) )
44 43 eqeq1d ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
45 44 rexbidv ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( 2s ·s 𝑡 ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
46 42 45 syl5ibrcom ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
47 46 rexlimivv ( ∃ 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) )
48 32 47 sylbir ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) )
49 48 olcd ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
50 reeanv ( ∃ 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) )
51 1zs 1s ∈ ℤs
52 51 a1i ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → 1s ∈ ℤs )
53 13 52 zsubscld ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 𝑤 -s 𝑡 ) -s 1s ) ∈ ℤs )
54 13 znod ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( 𝑤 -s 𝑡 ) ∈ No )
55 15 54 35 subsdid ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) )
56 55 oveq1d ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) = ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) +s 1s ) )
57 mulsrid ( 2s No → ( 2s ·s 1s ) = 2s )
58 14 57 ax-mp ( 2s ·s 1s ) = 2s
59 58 oveq2i ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s )
60 59 oveq1i ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) +s 1s ) = ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s ) +s 1s )
61 15 54 mulscld ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( 2s ·s ( 𝑤 -s 𝑡 ) ) ∈ No )
62 61 35 15 addsubsd ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) -s 2s ) = ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s ) +s 1s ) )
63 61 35 15 addsubsassd ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s 1s ) -s 2s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) )
64 62 63 eqtr3d ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 2s ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) )
65 60 64 eqtrid ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s ( 2s ·s 1s ) ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) )
66 56 65 eqtrd ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) )
67 subscl ( ( 1s No ∧ 2s No ) → ( 1s -s 2s ) ∈ No )
68 34 14 67 mp2an ( 1s -s 2s ) ∈ No
69 negnegs ( ( 1s -s 2s ) ∈ No → ( -us ‘ ( -us ‘ ( 1s -s 2s ) ) ) = ( 1s -s 2s ) )
70 68 69 ax-mp ( -us ‘ ( -us ‘ ( 1s -s 2s ) ) ) = ( 1s -s 2s )
71 34 a1i ( ⊤ → 1s No )
72 14 a1i ( ⊤ → 2s No )
73 71 72 negsubsdi2d ( ⊤ → ( -us ‘ ( 1s -s 2s ) ) = ( 2s -s 1s ) )
74 73 mptru ( -us ‘ ( 1s -s 2s ) ) = ( 2s -s 1s )
75 1p1e2s ( 1s +s 1s ) = 2s
76 subadds ( ( 2s No ∧ 1s No ∧ 1s No ) → ( ( 2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s ) )
77 14 34 34 76 mp3an ( ( 2s -s 1s ) = 1s ↔ ( 1s +s 1s ) = 2s )
78 75 77 mpbir ( 2s -s 1s ) = 1s
79 74 78 eqtri ( -us ‘ ( 1s -s 2s ) ) = 1s
80 79 fveq2i ( -us ‘ ( -us ‘ ( 1s -s 2s ) ) ) = ( -us ‘ 1s )
81 70 80 eqtr3i ( 1s -s 2s ) = ( -us ‘ 1s )
82 81 oveq2i ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( -us ‘ 1s ) )
83 61 35 subsvald ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 1s ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( -us ‘ 1s ) ) )
84 82 83 eqtr4id ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) = ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 1s ) )
85 20 oveq1d ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) -s 1s ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) -s 1s ) )
86 84 85 eqtrd ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 2s ·s ( 𝑤 -s 𝑡 ) ) +s ( 1s -s 2s ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) -s 1s ) )
87 33 36 35 subsubs4d ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) -s 1s ) = ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) )
88 66 86 87 3eqtrrd ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) )
89 oveq2 ( 𝑥 = ( ( 𝑤 -s 𝑡 ) -s 1s ) → ( 2s ·s 𝑥 ) = ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) )
90 89 oveq1d ( 𝑥 = ( ( 𝑤 -s 𝑡 ) -s 1s ) → ( ( 2s ·s 𝑥 ) +s 1s ) = ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) )
91 90 rspceeqv ( ( ( ( 𝑤 -s 𝑡 ) -s 1s ) ∈ ℤs ∧ ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s ( ( 𝑤 -s 𝑡 ) -s 1s ) ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) )
92 53 88 91 syl2anc ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) )
93 oveq12 ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) )
94 93 eqeq1d ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
95 94 rexbidv ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ∃ 𝑥 ∈ ℤs ( ( 2s ·s 𝑤 ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
96 92 95 syl5ibrcom ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
97 96 rexlimivv ( ∃ 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ( 𝑦 = ( 2s ·s 𝑤 ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) )
98 50 97 sylbir ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) )
99 98 olcd ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
100 reeanv ( ∃ 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ↔ ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) )
101 33 35 36 35 addsubs4d ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s ( 1s -s 1s ) ) )
102 subsid ( 1s No → ( 1s -s 1s ) = 0s )
103 34 102 ax-mp ( 1s -s 1s ) = 0s
104 103 oveq2i ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s ( 1s -s 1s ) ) = ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 0s )
105 33 36 subscld ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) ∈ No )
106 105 addsridd ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 0s ) = ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) )
107 106 21 eqtrd ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s 0s ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) )
108 104 107 eqtrid ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) -s ( 2s ·s 𝑡 ) ) +s ( 1s -s 1s ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) )
109 101 108 eqtrd ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) )
110 22 rspceeqv ( ( ( 𝑤 -s 𝑡 ) ∈ ℤs ∧ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s ( 𝑤 -s 𝑡 ) ) ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) )
111 13 109 110 syl2anc ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) )
112 oveq12 ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( 𝑦 -s 𝑧 ) = ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) )
113 112 eqeq1d ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) ) )
114 113 rexbidv ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ↔ ∃ 𝑥 ∈ ℤs ( ( ( 2s ·s 𝑤 ) +s 1s ) -s ( ( 2s ·s 𝑡 ) +s 1s ) ) = ( 2s ·s 𝑥 ) ) )
115 111 114 syl5ibrcom ( ( 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ) → ( ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) )
116 115 rexlimivv ( ∃ 𝑤 ∈ ℕ0s𝑡 ∈ ℕ0s ( 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) )
117 100 116 sylbir ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) )
118 117 orcd ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ∧ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
119 31 49 99 118 ccase ( ( ( ∃ 𝑤 ∈ ℕ0s 𝑦 = ( 2s ·s 𝑤 ) ∨ ∃ 𝑤 ∈ ℕ0s 𝑦 = ( ( 2s ·s 𝑤 ) +s 1s ) ) ∧ ( ∃ 𝑡 ∈ ℕ0s 𝑧 = ( 2s ·s 𝑡 ) ∨ ∃ 𝑡 ∈ ℕ0s 𝑧 = ( ( 2s ·s 𝑡 ) +s 1s ) ) ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
120 4 7 119 syl2an ( ( 𝑦 ∈ ℕs𝑧 ∈ ℕs ) → ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
121 eqeq1 ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( 𝑁 = ( 2s ·s 𝑥 ) ↔ ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) )
122 121 rexbidv ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ↔ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ) )
123 eqeq1 ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
124 123 rexbidv ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ↔ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
125 122 124 orbi12d ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) ↔ ( ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs ( 𝑦 -s 𝑧 ) = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) )
126 120 125 syl5ibrcom ( ( 𝑦 ∈ ℕs𝑧 ∈ ℕs ) → ( 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) ) )
127 126 rexlimivv ( ∃ 𝑦 ∈ ℕs𝑧 ∈ ℕs 𝑁 = ( 𝑦 -s 𝑧 ) → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) )
128 1 127 sylbi ( 𝑁 ∈ ℤs → ( ∃ 𝑥 ∈ ℤs 𝑁 = ( 2s ·s 𝑥 ) ∨ ∃ 𝑥 ∈ ℤs 𝑁 = ( ( 2s ·s 𝑥 ) +s 1s ) ) )