| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zs12no |
⊢ ( 𝐴 ∈ ℤs[1/2] → 𝐴 ∈ No ) |
| 2 |
|
zs12no |
⊢ ( 𝐵 ∈ ℤs[1/2] → 𝐵 ∈ No ) |
| 3 |
|
subsval |
⊢ ( ( 𝐴 ∈ No ∧ 𝐵 ∈ No ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2] ) → ( 𝐴 -s 𝐵 ) = ( 𝐴 +s ( -us ‘ 𝐵 ) ) ) |
| 5 |
|
zs12negscl |
⊢ ( 𝐵 ∈ ℤs[1/2] → ( -us ‘ 𝐵 ) ∈ ℤs[1/2] ) |
| 6 |
|
zs12addscl |
⊢ ( ( 𝐴 ∈ ℤs[1/2] ∧ ( -us ‘ 𝐵 ) ∈ ℤs[1/2] ) → ( 𝐴 +s ( -us ‘ 𝐵 ) ) ∈ ℤs[1/2] ) |
| 7 |
5 6
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2] ) → ( 𝐴 +s ( -us ‘ 𝐵 ) ) ∈ ℤs[1/2] ) |
| 8 |
4 7
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℤs[1/2] ∧ 𝐵 ∈ ℤs[1/2] ) → ( 𝐴 -s 𝐵 ) ∈ ℤs[1/2] ) |