| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elzs12 |
⊢ ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑎 ∈ ℤs ∃ 𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ) |
| 2 |
|
zno |
⊢ ( 𝑎 ∈ ℤs → 𝑎 ∈ No ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝑎 ∈ ℤs ∧ 𝑛 ∈ ℕ0s ) → 𝑎 ∈ No ) |
| 4 |
|
simpr |
⊢ ( ( 𝑎 ∈ ℤs ∧ 𝑛 ∈ ℕ0s ) → 𝑛 ∈ ℕ0s ) |
| 5 |
3 4
|
pw2divscld |
⊢ ( ( 𝑎 ∈ ℤs ∧ 𝑛 ∈ ℕ0s ) → ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∈ No ) |
| 6 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) → ( 𝐴 ∈ No ↔ ( 𝑎 /su ( 2s ↑s 𝑛 ) ) ∈ No ) ) |
| 7 |
5 6
|
syl5ibrcom |
⊢ ( ( 𝑎 ∈ ℤs ∧ 𝑛 ∈ ℕ0s ) → ( 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) → 𝐴 ∈ No ) ) |
| 8 |
7
|
rexlimivv |
⊢ ( ∃ 𝑎 ∈ ℤs ∃ 𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2s ↑s 𝑛 ) ) → 𝐴 ∈ No ) |
| 9 |
1 8
|
sylbi |
⊢ ( 𝐴 ∈ ℤs[1/2] → 𝐴 ∈ No ) |