Metamath Proof Explorer


Theorem zs12no

Description: A dyadic is a surreal. (Contributed by Scott Fenton, 11-Dec-2025)

Ref Expression
Assertion zs12no ( 𝐴 ∈ ℤs[1/2] → 𝐴 No )

Proof

Step Hyp Ref Expression
1 elzs12 ( 𝐴 ∈ ℤs[1/2] ↔ ∃ 𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2ss 𝑛 ) ) )
2 zno ( 𝑎 ∈ ℤs𝑎 No )
3 2 adantr ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → 𝑎 No )
4 simpr ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → 𝑛 ∈ ℕ0s )
5 3 4 pw2divscld ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( 𝑎 /su ( 2ss 𝑛 ) ) ∈ No )
6 eleq1 ( 𝐴 = ( 𝑎 /su ( 2ss 𝑛 ) ) → ( 𝐴 No ↔ ( 𝑎 /su ( 2ss 𝑛 ) ) ∈ No ) )
7 5 6 syl5ibrcom ( ( 𝑎 ∈ ℤs𝑛 ∈ ℕ0s ) → ( 𝐴 = ( 𝑎 /su ( 2ss 𝑛 ) ) → 𝐴 No ) )
8 7 rexlimivv ( ∃ 𝑎 ∈ ℤs𝑛 ∈ ℕ0s 𝐴 = ( 𝑎 /su ( 2ss 𝑛 ) ) → 𝐴 No )
9 1 8 sylbi ( 𝐴 ∈ ℤs[1/2] → 𝐴 No )