Metamath Proof Explorer


Theorem zs12no

Description: A dyadic is a surreal. (Contributed by Scott Fenton, 11-Dec-2025)

Ref Expression
Assertion zs12no Could not format assertion : No typesetting found for |- ( A e. ZZ_s[1/2] -> A e. No ) with typecode |-

Proof

Step Hyp Ref Expression
1 elzs12 Could not format ( A e. ZZ_s[1/2] <-> E. a e. ZZ_s E. n e. NN0_s A = ( a /su ( 2s ^su n ) ) ) : No typesetting found for |- ( A e. ZZ_s[1/2] <-> E. a e. ZZ_s E. n e. NN0_s A = ( a /su ( 2s ^su n ) ) ) with typecode |-
2 zno a s a No
3 2 adantr a s n 0s a No
4 simpr a s n 0s n 0s
5 3 4 pw2divscld Could not format ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( a /su ( 2s ^su n ) ) e. No ) : No typesetting found for |- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( a /su ( 2s ^su n ) ) e. No ) with typecode |-
6 eleq1 Could not format ( A = ( a /su ( 2s ^su n ) ) -> ( A e. No <-> ( a /su ( 2s ^su n ) ) e. No ) ) : No typesetting found for |- ( A = ( a /su ( 2s ^su n ) ) -> ( A e. No <-> ( a /su ( 2s ^su n ) ) e. No ) ) with typecode |-
7 5 6 syl5ibrcom Could not format ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( A = ( a /su ( 2s ^su n ) ) -> A e. No ) ) : No typesetting found for |- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( A = ( a /su ( 2s ^su n ) ) -> A e. No ) ) with typecode |-
8 7 rexlimivv Could not format ( E. a e. ZZ_s E. n e. NN0_s A = ( a /su ( 2s ^su n ) ) -> A e. No ) : No typesetting found for |- ( E. a e. ZZ_s E. n e. NN0_s A = ( a /su ( 2s ^su n ) ) -> A e. No ) with typecode |-
9 1 8 sylbi Could not format ( A e. ZZ_s[1/2] -> A e. No ) : No typesetting found for |- ( A e. ZZ_s[1/2] -> A e. No ) with typecode |-