| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elzs12 |
|- ( A e. ZZ_s[1/2] <-> E. a e. ZZ_s E. n e. NN0_s A = ( a /su ( 2s ^su n ) ) ) |
| 2 |
|
zno |
|- ( a e. ZZ_s -> a e. No ) |
| 3 |
2
|
adantr |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> a e. No ) |
| 4 |
|
simpr |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> n e. NN0_s ) |
| 5 |
3 4
|
pw2divscld |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( a /su ( 2s ^su n ) ) e. No ) |
| 6 |
|
eleq1 |
|- ( A = ( a /su ( 2s ^su n ) ) -> ( A e. No <-> ( a /su ( 2s ^su n ) ) e. No ) ) |
| 7 |
5 6
|
syl5ibrcom |
|- ( ( a e. ZZ_s /\ n e. NN0_s ) -> ( A = ( a /su ( 2s ^su n ) ) -> A e. No ) ) |
| 8 |
7
|
rexlimivv |
|- ( E. a e. ZZ_s E. n e. NN0_s A = ( a /su ( 2s ^su n ) ) -> A e. No ) |
| 9 |
1 8
|
sylbi |
|- ( A e. ZZ_s[1/2] -> A e. No ) |